Information Management Software

Dimensional Modeling:

In a Business
Intelligence Environment

Dimensional modeling for easier data
access and analysis

Maintaining flexibility for
growth and change

“ Optimizing for query
performance

Chuck Ballard
Daniel M. Farrell
Amit Gupta
Carlos Mazuela
Stanislav Vohnik

00kS

ibm.com/redbooks

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Dimensional Modeling: In a Business Intelligence
Environment

March 2006

SG24-7138-00

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

First Edition (March 2006)

This edition applies to DB2 Universal Database Enterprise Server Edition, Version 8.2, and the
Rational Data Architect, Version 6.1.

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

Notices Xi
Trademarks e Xii
Preface Xiii
The team that wrote thisredbook. L. Xiv
Become a publishedauthor Xvi
Comments WelCome. XVi
Chapter 1. Introduction. 1
1.1 Scopeofthisredbook 4
1.2 What this redbookincludes. 6
1.3 Data modeling and business intelligence 7
1.3.1 SQL, OLTP,and E/Rmodeling. 7
1.8.2 Dimensional modeling. i, 12
1.4 Redbook contents abstract L. 16
Chapter 2. Business Intelligence: The destination 21
2.1 Business intelligence overview e 23
2.1.1 Information environment 23
2.1.2 Web services. e 25
2.1.3 Activity examples 28
214 DIIVEIS. . . e 30
2.2 Keybusinessinitiatives. 31
2.2.1 Business performance management 31
2.2.2 Real-time business intelligence. 36
2.2.3 Datamartconsolidation 40
2.2.4 The impact of dimensional modeling. 44
Chapter 3. Data modeling: The organizing structure. 47
3.1 The importance of datamodeling 48
3.2 Data modeling techniques. i 49
3.2.1 E/Rmodeling.o 49
3.2.2 Dimensional modeling. 52
3.3 Data warehouse architecture choices 57
3.3.1 Enterprise datawarehouse............... 58
3.3.2 Independent data mart architecture 59
3.3.3 Dependent data mart architecture. 61
3.4 Data models and data warehousing architectures 61
3.4.1 Enterprise datawarehouse. 62

© Copyright IBM Corp. 2006. All rights reserved. iii

3.4.2 Independent data mart architecture 63

3.4.3 Dependent data mart architecture. 64
3.5 Data modelinglifecycle 66
3.5.1 Modelingcomponents. it 66
3.5.2 Datawarehousingot e 68
3.5.3 Conceptual design 69
3.5.4 Logicaldatamodeling. 69
3.5.5 Physicaldatamodeling........... i 73
Chapter 4. Data analysis techniques.............................. 77
4.1 Information pyramid. 78
4.1.1 The information environment 78
4.2 Bl reporting tool architectures 83
4.3 Types of Bl USErs e 83
4.4 Query and reporting 85
4.5 Multidimensional analysis techniques. 86
451 SliceanddiCet 87
452 PiVOlING . ..ot e 90
453 Drill-downand drill-up 90
4.5.4 Drill-;aCroSso e 92
455 Roll-downand Roll-up.o 93
4.6 Queryandreportingtools 94
4.6.1 SQLquerylanguage.ot 94
4.6.2 Spreadsheets 97
4.6.3 Reporting applications. 97
4.6.4 Dashboard and scorecard applications. 98
4.6.5 Data mining applications. i 100
Chapter 5. Dimensional Model Design LifeCycle 103
5.1 The structure andphases i, 104
5.2 Identify business process requirements 105
5.2.1 Create and Study the enterprise business process list. 108
5.2.2 Identify business process i 110
5.2.3 lIdentify high level entities and measures for conformance. 111
5.2.4 Identifydatasources. 112
5.2.5 Select requirements gatheringapproach 113
5.2.6 Requirementsgathering 116
5.2.7 Requirementsanalysis i 118
5.2.8 Business process analysissummary 120
5.3 Identifythe grain 121
5.3.1 Facttable granularity. 123
5.3.2 Multiple, separategrains. 125
5.3.3 Facttabletypes. 126

iv Dimensional Modeling: In a Business Intelligence Environment

5.3.4 Check grainatomicity i, 128

5.3.5 High level dimensions and facts fromgrain 131
5.3.6 Final output of the identify the grainphase. 132
5.4 Identify the dimensions 133
5.4.1 DIMENSIONS . . . o oo e 135
5.4.2 Degenerate dimensions i 142
5.4.3 Conformeddimensions. i, 144
5.4.4 Dimensional attributes and hierarchies...................... 145
5.4.5 Date and time granularity 155
5.4.6 Slowly changingdimensions. i, 159
5.4.7 Fastchangingdimensions 162
5.4.8 Casesforsnowflaking............. 165
5.4.9 Other dimensionalchallenges. 166
5.5 Identifythefacts 169
5.5 Facts 171
5.5.2 Conformedfacts i 174
5.5.3 Facttypes 174
5.5.4 Yearto-datefacts 176
5.5.5 Eventfacttables 177
5.5.6 Composite key design. i 177
5.5.7 Facttable sizingandgrowth 179
5.6 Verifythemodel 181
5.6.1 User verification against business requirements. 181
5.7 Physical design considerations. i 183
5.7.1 Aggregations. 184
5.7.2 Aggregate navigation 188
5.7.3 Indexing.o 190
5.7.4 Partitioning e 195
5.8 Metadatamanagement 196
5.8.1 Identifyingthemetadata. 199
5.9 SUMMANY . . .o e 206
Chapter 6. Modeling considerations 209
6.1 Converting an E/R model to a dimensional model 210
6.1.1 Identify the business process from the E/Rmodel 210
6.1.2 Identify many-to-many tables in E/Rmodel 211
6.1.3 Denormalize remaining tables into flat dimension tables 213
6.1.4 Identify date and time dimension from E/Rmodel 214
6.2 ldentifying the grainforthemodel............ 224
6.2.1 Handling multiple, separate grains for a business process. 225
6.2.2 Importance of detailed atomicgrain 228
6.2.3 Designing different grains for different fact table types. 230
6.3 Identifying the model dimensions 239

Contents v

6.3.1 Degenerate dimensions 240

6.3.2 Handling time as a dimensionorafact...................... 245
6.3.3 Handling date and time across international time zones. 248
6.3.4 Handling dimension hierarchies 248
6.3.5 Slowly changingdimensions............. 261
6.3.6 Handling fast changing dimensions 269
6.3.7 Identifying dimensions that need to be snowflaked. 277
6.3.8 Identifying garbage dimensions, 282
6.3.9 Role-playingdimensions. 285
6.3.10 Multi-valueddimensions 288
6.3.11 Useofbridgetables 291
6.3.12 Heterogeneous products.t 292
6.3.13 Hot swappable dimensions or profiletables 294
6.4 Factsandfacttables.......... 297
6.4.1 Non-additivefacts 297
6.4.2 Semi-additivefacts 299
6.4.3 Composite key design for facttable 308
6.4.4 Handling event-based facttables 311
6.5 Physical design considerations. oL 318
6.5.1 DB2 Optimizer and MQTs for aggregate navigation............ 318
6.5.2 Indexing for dimension and facttables 324
6.6 Handlingchanges 330
6.6.1 Changestodata............ i i 330
6.6.2 Changestostructure. i 331
6.6.3 Changes to business requirements. 332
Chapter 7. Case Study: Dimensional model development 333
7.1 The project 334
7.1.1 Thebackground 334
7.2 The company. e e 336
7.2.1 Business activities. 336
7.22 Productlines 337
723 IT Architecture. 339
7.2.4 High level requirements forthe project 340
7.2.5 Business intelligence - data warehouse project architecture 341
7.2.6 Enterprise data warehouse E/R diagram 343
7.2.7 Company Structure 344
7.2.8 General business process description 344
7.2.9 Developing the dimensionalmodels 351
7.3 ldentify the requirements. e 351
7.3.1 Businessprocesslist. 352
7.3.2 Identify business processc. i 355
7.3.3 High level entities for conformance. 359

Vi Dimensional Modeling: In a Business Intelligence Environment

7.3.4 Identification of data source systems 361

7.3.5 Select requirements gatheringapproach 362
7.3.6 Gathertherequirements. 362
7.3.7 Analyzetherequirements.............. i 366
7.3.8 Business process analysissummary 372
7.4 ldentifythegrain 373
7.4.1 Identify facttable granularity o 374
7.4.2 |dentify multiple separategrains o 375
7.4.3 ldentify facttabletypes............ 377
7.4.4 Check grainatomicity i 377
7.4.5 ldentify high level dimensionsandfacts 378
7.4.6 Grain definitionsummary i 379
7.5 Identify the dimensions 380
7.5.1 Identifydimensions 382
7.5.2 Check for existing conformed dimensions 384
7.5.3 ldentify degenerate dimensions, 384
7.5.4 |dentify dimensional attributes and hierarchies. 385
7.5.5 ldentifying the hierarchies in the dimensions 393
7.5.6 Date and time dimension and granularity 399
7.5.7 Handling slowly changing dimensions 400
7.5.8 Handling fast changing dimensions 400
7.5.9 ldentify cases for snowflaking........... 404
7.5.10 Handling other dimensional challenges 405
7.5.11 Dimensional model containing final dimensions 409
7.6 ldentifythefacts 409
7.6.1 Identifyfacts 412
7.6.2 Conformedfacts i 414
7.6.3 Identify fact types (additivity and derived types) 414
7.6.4 Yearto-datefacts 420
7.6.5 Event facts, composite keys,andgrowth 420
7.6.6 Phase Summary 421
7.7 Other phases.t e e e e e 421
7.8 CONCIUSION. . . ottt e 424
Chapter 8. Case Study: Analyzing a dimensional model. 425
8.1 Case Study - Sherpa and Sid Corporation 426
8.1.1 Aboutthecompany.......... 426
8.1.2 Projectdefinition 426
8.2 Businessneedsreview 427
8.2.1 Lifecycleofaproduct.............. i 427
8.2.2 Anatomyofasale......... 428
8.2.3 Structure of the organization. 428
8.2.4 Definingcostandrevenue 429

Contents vii

viii

8.2.5 Whatdotheuserswant? 430

8.2.6 Draft dimensionalmodel 431
8.3 Dimensional model review guidelines. 432
8.3.1 Whatisthegrain?....... i 433
8.3.2 Are there multiple granularities involved? 434
8.3.3 Check grainatomicity 434
8.3.4 Review granularity for date and time dimension............... 435
8.3.5 Are there degenerate dimensions?. 435
8.3.6 Surrogate Keys 436
8.3.7 Conformed dimensionsandfacts 437
8.3.8 Dimension granularity and quality. 437
8.3.9 Dimension hierarchies. 439
8.3.10 Cases forsnowflaking. L. 440
8.3.11 Identify slowly changing dimensions. 441
8.3.12 Identify fast changing dimensions. 442
8.3.13 Yearto-datefacts 442
8.4 Schema following the designreview............ 443
Chapter 9. Managingthe metadata.............................. 447
9.1 Whatismetadata?........... 448
9.2 Meta data types accordingtocontent. 451
9.2.1 Businessmetadata. i 451
9.2.2 Structuralmetadata 452
9.2.3 Technicalmetadata 452
9.2.4 Operationalmetadata. 453
9.3 Meta data types accordingtotheformat. 453
9.3.1 Structuredmetadata. i 453
9.3.2 Unstructured metadata. 453
9.4 DeSigN . . . e 453
9.4.1 Meta data strategy -Why? 454
9.4.2 Metadatamodel -What?, 454
9.4.3 Meta data repository -Where? L. 455
9.4.4 Meta data management system-How? 456
9.4.5 Meta data system access-Who?............ 456
9.5 Datastandards 457
9.5.1 Thecontentsofthedata.............. 457
9.5.2 The format of the data - domain definition 458
9.5.3 Namingofthedata 462
9.5.4 Standard datastructures. 465
9.6 Local language in international applications 470
9.7 Dimensional model metadata. 472
9.8 Meta data data model -anexample 480
9.9 Metadatatools e 481

Dimensional Modeling: In a Business Intelligence Environment

9.9.1 Meta data tools in business intelligence 481

9.9.2 Metadatatoolexample............... 482
Chapter 10. SQL query optimizer: Aprimer 497
10.1 Whatisaqueryoptimizer 499
10.2 Query optimizerby example 503

10.2.1 Background.t e 503

10.2.2 Theenvironment. e 504

10.2.3 Problem identification and decomposition. 506

10.2.4 Experimentwiththe problem......... 516
10.3 Query optimizer example solution. 529

10.3.1 Thetotal solution. i, 530

10.3.2 Additionalcomments. 532
10.4 Query optimizer example solutionupdate. 534

10.4.1 Readingthenewqueryplan........... 536

10.4.2 Alltableaccessmethods...................coovian, 537

10.4.3 Continue readingthe new queryplan...................... 540

10.4.4 Alltable joinmethods 541

10.4.5 Continuing the list of all table join methods. 546
10.5 Rules and cost-based query optimizers 551

10.5.1 Rule 1: Qutertablejoins 552

10.5.2 Rule 2: (Non-outer, normal) tablejoins 556

10.5.3 Rule 3: (Presence and selectivity of) Filter columns........... 559

10.5.4 Rules 4 and 5: Table size and table cardinality. 567
10.6 Other query optimizer technologies. 568

10.6.1 Query rewrite.t e 568

10.6.2 Multi-stage back-end command parser. 579

10.6.3 Indexnegation. e 582

10.6.4 Query optimizer directives (hints) 584

10.6.5 Data distributions 591

10.6.6 Fragment elimination, multidimensional clustering 593

10.6.7 Query optimizer histograms 597
10.7 SUMMAIY . . .ot e e e e e e e 598
Chapter 11. Query optimizerapplied. 599
11.1 Software developmentlifecycle 601

11.1.1 Issues withthelifecycle 602

11.1.2 Process modeling withinalifecycle 603
11.2 Artifacts created from a processmodel. 607

11.2.1 Createthe SQLAPI 608

11.2.2 Record query plandocuments, 609
11.3 Example of processmodeling. i .. 610

11.3.1 Explanation of the processexample. 614

Contents ix

X

114 AnSQLDML example.ot i 615

11.4.1 Explanationof DMLexample 618
11.5 ConcCluSIONS.o 624
GlOSSarY 627
Abbreviationsandacronyms oo 633
Related publications 637
IBM RedbooKS e 637
Other publications e 637
HowtogetIBM Redbooks 638
Help from IBM e e 638
Index e 639

Dimensional Modeling: In a Business Intelligence Environment

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS I1S" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2006. All rights reserved. Xi

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) (@ ® DB2 OLAP Server™ MQSeries®

pSeries® ' DB2® Rational®

AIX® DRDA® Red Brick™

Cube Views™ Informix® Redbooks®

Database 2™ Intelligent Miner™ RS/6000®

Distributed Relational Database IBM® WebSphere®
Architecture™ IMS™

The following terms are trademarks of other companies:

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

MetaStage, MetaBroker, MetaArchitect, DataStage, Ascential, are trademarks or registered trademarks of
Ascential Software Corporation in the United States, other countries, or both.

Co-Author, and Portable Document Format (PDF) are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, other countries, or both.

EJB, Java, JDBC, JDK, JRE, JVM, J2EE, and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Excel, Microsoft, Visual Basic, Windows NT, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Xii Dimensional Modeling: In a Business Intelligence Environment

Preface

Business intelligence (Bl) is a key driver in the business world today. We are now
deep into the information age, and things have changed dramatically. It has long
been said that information is power, and we can now understand that statement
ever more clearly.

Business is moving at a much faster pace. Management is looking for answers to
their questions, and they need these answers much more quickly. Time is money,
and real-time information is fast becoming a requirement. These directions,
movement, and initiatives force major changes in all the business processes, and
have put a sharper focus on the whole area of data management.

To support all this requires integrated, accurate, current, and understandable
sources of data that can be accessed very quickly, transformed to information,
and used for decision-making. Do you have the data infrastructure in place to
support those requirements? There can be a good number of components
involved, such as:

A well-architected data environment

Access to, and integration of, heterogeneous data sources

Data warehousing to accumulate, organize, and store the data
Business processes to support the data flow

Data federation for heterogeneous data sources

Dashboarding for proactive process management

Analytic applications for dynamic problem recognition and resolution

vVVvyVvYyVvYyVvYYyvYyy

It should be quite clear that data is the enabler. And the first point in the above list
is about having a good data architecture. What would you say is the cornerstore
building block for creating such an architecture? You are correct! It is the data
model. Everything emanates from the data model. More precisely, in a data
warehousing and business intelligence environment, the dimensional model.
Therefore, the subject of this IBM® Redbook.

Are you ready for these changes? Planning for them? Already started? Get
yourself positioned for success, set goals, and quickly move to reach them.

Need help? That is one of the objectives of this IBM Redbook. Read on.

Acknowledgement

Before proceeding, we would like to acknowledge Dr. Ralph Kimball for his work
in data warehousing and dimensional data modeling. He is well known in the
industry, is a leading proponent of the technology, and is generally acknowledged

© Copyright IBM Corp. 2006. All rights reserved. Xiii

to be the originator of many of the core concepts in this subject area. When you
think of subjects such as data warehousing, data marts, and dimensional
modeling, one of the first names that comes to mind is Dr. Kimball. He has
written extensively about these and related subjects, and provides education and
consulting offerings to help clients as they design, develop, and implement their
data warehousing environments. We have listed a few of his publications about
dimensional modeling and data warehousing, published by John Wiley & Sons,
in “Related publications” on page 637. We consider these to be required reading
for anyone who is interested in, and particularly for those who are implementing,
data warehousing.

The team that wrote this redbook

Xiv

This IBM Redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose Center.

Some team members worked locally at the International Technical Support
Organization - San Jose Center, while others worked from remote locations. The
team members are depicted below, along with a short biographical sketch of
each:

Chuck Ballard is a Project Manager at the International
| Technical Support organization, in San Jose, California. He
| has over 35 years experience, holding positions in the areas
of Product Engineering, Sales, Marketing, Technical
Support, and Management. His expertise is in the areas of
database, data management, data warehousing, business
intelligence, and process re-engineering. He has written
extensively on these subjects, taught classes, and presented
at conferences and seminars worldwide. Chuck has both a
Bachelors degree and a Masters degree in Industrial Engineering from Purdue
University.

Daniel M. Farrell is an IBM certified Professional and
Pre-sales Engineer, from Denver, Colorado. In 1985, Daniel
began working with Informix® software products at a national
retail and catalog company, a job that would set his direction
for the next twenty or so years. He joined IBM as a result of
: the acquisition of Informix. Daniel has a Masters in Computer
- Science from Regis University and is currently pursuing a

i *' || Ph.D. from Clemson in Adult Education and Human

T Resource Studies.

Dimensional Modeling: In a Business Intelligence Environment

Amit Gupta is a Data Warehousing Consultant from 1BM,
India. He is a Microsoft® Certified Trainer, MCDBA, and a
Certified OLAP Specialist. He has about seven years of
experience in the areas of databases, data management,
data warehousing, and business intelligence. He teaches
extensively on dimensional modeling, data warehousing,
and Bl courses in IBM India. Amit has also been a
Co-Author® for a previous IBM Redbook on Data Mart
Consolidation. He holds a degree in Electronics and
Communications from Delhi Institute of Technology, Delhi University, New Delhi,
India.

Carlos Mazuela is a data warehousing specialist, data
modeler, and data architect from Zurich, Switzerland. He has
been with IBM for eight years, and is currently working on
data warehousing projects in the insurance and banking
sectors. Carlos is also a DB2/UDB specialist, primarily in the
- | areas of security, performance, and data recovery. He has
| skills and experience in the business intelligence
environment, and has used tools such as Business Obijects,
| Brio Enterprise, and Crystal Reports. Carlos holds a degree
in Computer Science from the Computer Technical School of the Politechnical
University of Madrid, Spain.

Stanislav Vohnik is an IT Architect from Prague, Czech
Republic. He holds a Masters Degree in Mathematics and
Physics from the Charles University, in Prague, Czech
Republic. He has more than 10 years of experience in data
management, and has been a programmer, IT specialist, IT
adviser, and researcher in Physics. His areas of expertise
| include database, data warehousing, business intelligence,
| database performance, client/server technologies, and
internet computing.

Other Contributors:

Thanks to the following people for their contributions to this project:

Sreeram Potukuchi: We would like to give special acknowledgement to
Sreeram, who is a data warehouse architect and manager. He works for Werner
Enterprises, an IBM Business Partner. Sreeram contributed content, and worked
along with the team in determining the objectives and topics of the redbook.

A special thanks also to Helena, Marketa and Veronika.

From IBM Locations Worldwide

Preface Xxv

Melissa Montoya - DB2® Information Management Skills Segment Manager,
Menlo Park, CA.

Christine Shaw - Information Management Senior IT Specialist, Denver, CO.

Stepan Bem - Bl Solutions Expert, IBM Global Services, Prague, Czech
Republic.

Milan Rafaj - Data Management Senior IT Specialist, IBM Global Services,
Prague, Czech Republic.

From the International Technical Support Organization, San Jose Center
Mary Comianos - Operations and Communications

Deanna Polm - Residency Administration

Emma Jacobs - Graphics

Leslie Parham - Editor

Become a published author

Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!
We want our Redbooks® to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:
» Use the online Contact us review redbook form found at:
ibm.com/redbooks
» Send your comments in an e-mail to:

redbook@us.ibm.com

XVi Dimensional Modeling: In a Business Intelligence Environment

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Introduction

Within the scope of business computing and information technology (IT), it has
been said that the 1980s were about performing your business, the 1990s were
about analyzing your business, and the late 1990s and beyond are about new
routes to market and bringing your business to the World Wide Web. To build
further upon these categorizations, we offer the following points:

» Performing your business
— Online Transaction Processing (OLTP) was the supporting technology.
— Companies could increase net revenue by:

e Lowering cost of sales through computerized automation, and less
intensive labor. The internal cost and percent of (human) labor is
lowered.

* Better utilization of (capital) inventory, and increased visibility of on
hand inventory. A customer new order call center can view and sell
products from numerous and remote company-owned distribution
centers.

¢ Faster turnaround on order processing, faster order assembly and
shipment, and faster bill generation and collection. The number of days
outstanding, an important accounting metric, is lowered.

— Companies could grow in size beyond previously known limits.

— OLTP data is modeled using Entity Relationship (E/R) modeling,
sometimes referred to as Third Normal Form (3NF).

© Copyright IBM Corp. 2006. All rights reserved. 1

— Why business or IT cares: OLTP business systems are designed and
delivered to support the business and operational goals. While IT is a cost
center, IT support systems deliver cost savings on operational activities.

» Analyzing your business

— Business Intelligence (Bl) systems provide the information that
management needs to make good business decisions.

— Increase company net revenue and decrease operating margins (internal
cost) by:

¢ Lowering customer service. Bl aids in identifying high value customers,
delivering customer reward programs, and identifying causes of
customer loss through data analysis.

* Analysis of markets (product and customer demographic data) enables
more efficient application of (target) marketing programs. Bl systems
support increases in market share by enabling better understanding
and execution of the business plan to enable increased sales.

* Better operational efficiencies through better understanding of
operational data.

— Allows companies to compete with the most efficient operating margins.

— Bl data is modeled using a small amount of E/R (Entity/Relationship), such
as OLTP systems, but a larger percentage of businesses uses
dimensional modeling.

— Why business or IT cares: At this point in history, most companies are
expected to deliver and execute competent OLTP/operational type
systems for efficiency. However, Bl systems, when executed properly, can
improve their effectiveness and offer a distinct and strategic competitive
advantage. While technically still a cost center, IT moves more into the
strategic side of business planning and execution. IT is now, or should be,
viewed as moving from simply being necessary for operations to being a
strategic requirement for success.

> Bringing your business to the World Wide Web

— While OLTP and Bl are types, or categorizations, of business application
systems, the Web is a standard computing platform. OLTP and BI
systems could be delivered via the Web, two-tier client/server systems, or
possibly even simple ASCII (green screen) terminals. In this context, the
Web is merely a delivery platform for OLTP and Bl systems.

— You can increase company gross revenue and net revenue by the
following, for example:

¢ Allow for new routes to market (new sales channels). For example, a
local retailer can offer to sell products nationally and even

2 Dimensional Modeling: In a Business Intelligence Environment

internationally via their commercial Web site. Larger and global
markets offer the opportunity to increase sales revenue.

e Customers can self-service their account through a Web site or Web
Portal, make inquiries, and place, manage and track orders at any time
of day they choose. Customer self-service lowers the cost of sales. The
ability for customer self-service at the time of their choosing raises
customer satisfaction and lowers customer churn.

¢ Shared inventory visibility between retailer and manufacturer (extranet
application) lowers cost of sales, and can lower, or even eliminate,
inventory levels. A customer new order call center, or Web-based retail
site, can sell and deliver products from numerous and remote
manufacturer-maintained distribution centers.

— Allow companies to sell and compete globally, and at lower costs.

— While the Web is a standard computing platform, meaning standard
communication protocols, there are a few (at least) standard computing
infrastructure platform choices. Microsoft’s [dot].Net and the open source
Java/J2EE are two examples. This IBM Redbook gives attention and
preference to open source, cooperative computing, implying Java/J2EE™.

— Why business or IT cares: IT can become a profit center. That is, it can
become the virtual, automated sales agent, or customer self-service
agent. OLTP and Bl systems are delivered remotely or via the Web, and
should be designed and constructed to leverage this and future platforms.

This is not to say that these categorizations imply an ending to one and
beginning of another. They are all ongoing and in a constant state of
improvement. For example, Bl is all about analyzing your business. And, it is still
not a mature category. The fact that we are now in the process of bringing
business to the Web does not mean we have finished with data analysis and
performing our business. It is just a continuation of the evolution of business
computing and information technology.

Chapter 1. Introduction 3

1.1 Scope of this redbook

4

Business intelligence (Bl) environments are changing, and quite dramatically. Bl
is basically comprised of a data warehousing infrastructure, and a query,
analysis, and reporting environment. In this redbook, we focus on the data
warehousing infrastructure, but primarily a specific element of it termed the data
model. Or, more precisely in a data warehousing and business intelligence
environment, the dimensional model. We consider this the base building block of
the data warehouse. The focus then is on the data model. Or, more precisely, the
topic of data modeling and its impact on the business and business applications.

We discuss data modeling techniques and how to use them to develop flexible
and highly performant data models. We refer to the two primary techniques
businesses use, as EAR or E/R (Entity Attribute Relationship or sometimes as
simply Entity Relationship) data modeling and dimensional modeling.

In this redbook, we take a specific focus on dimensional modeling. There is a
detailed overview of dimensional modeling, along with examples to aid in
understanding. We also provide best practices for implementing and maintaining
a dimensional model, for converting existing data models, and for combining
multiple models.

Acknowledgement

Before proceeding, we would like to acknowledge Dr. Ralph Kimball for his work
in data warehousing and dimensional data modeling. He is well known in the
industry, is a leading proponent of the technology, and is generally acknowledged
to be the originator of many of the core concepts in this subject area. When you
think of subjects such as data warehousing, data marts, and dimensional
modeling, one of the first names that comes to mind is Dr. Kimball. He has
written extensively about these and related subjects, and provides education and
consulting offerings to help clients as they design, develop, and implement their
data warehousing environments. We have listed a few of his publications about
dimensional modeling and data warehousing, published by John Wiley & Sons,
in “Related publications” on page 637. We consider these to be required reading
for anyone who is interested in, and particularly for those who are implementing,
data warehousing.

Objective

Once again, the objective is not to make this redbook a treatise on dimensional
modeling techniques, but to focus at a more practical level. That is to relate the
implementation and maintenance of a dimensional model to business
intelligence. The primary purpose of business intelligence is to provide answers
to your business questions, and that requires a robust data warehousing
infrastructure to house your data and information objects. But, it also requires a

Dimensional Modeling: In a Business Intelligence Environment

query, analysis, and reporting environment to get the information out of the data
warehouse and to the users. And to get it to those users of the system with
acceptable performance.

We also provide a discussion of three current business intelligence initiatives,
which are business performance management, real-time business intelligence,
and data mart consolidation. These are all initiatives that can help you meet your
business goals and objectives, as well as your performance measurements. For
more detailed information about these specific initiatives, refer to the following
IBM Redbooks:

» Business Performance Management...Meets Business Intelligence,
SG24-6340

» Preparing for DB2 Near-Realtime Business Intelligence, SG24-6071

» Data Mart Consolidation: Getting Control of Your Enterprise Information,
SG24-6653

To get these, and other IBM Redbooks, see “How to get IBM Redbooks” on
page 638.

Programming and the data model

This IBM Redbook also has a focus on business application programming. More
specifically, we dedicated it to business application programming for business
intelligence systems, including such elements as data marts, data warehouses,
and operational data stores, and related technologies using relational database
servers that utilize industry standard Structured Query Language (SQL).

In general, there is systems programming and there is business application
programming. Systems programming involves creating the next great operating
system, spreadsheet, or word processor. Business application programming
would involve creating such things as an employee time and attendance system,
a customer new order entry system, a market productivity analysis and reporting
system, or something similar. While both systems programming and business
application programming make use of data modeling, systems programming
does so sparingly. Systems programming is typically more about algorithms,
program function, the user interface, and other similar things. Systems
programming uses data modeling merely as a means to accomplish its task,
which is to deliver such things as word processing functionality or a spreadsheet
program. Business application programming is typically all about processing
data, and is almost entirely dependent on data modeling. Regardless of the
architecture, a business application systems always sits on top of a persistent
data model of some type.

Chapter 1. Introduction 5

1.2 What this redbook includes

It seems that the informational technology industry is always chasing the next
great thing. At this time, the current next great thing seems to be
service-oriented architecture (SOA); a specific subtopic or sub-capability within a
Web-based architecture. So why do we want to provide a new publication on
business intelligence and dimensional modeling? Well, consider the following:

» We focus specifically on the combined topics of dimensional modeling and
business intelligence. This redbook is not intended to be an academic
treatise, but a practical guide for implementing dimensional models oriented
specifically to business intelligence systems.

» Business intelligence is a strategic type of information technology that can
deliver a significant contribution to the net and operating revenues of a
company. While the Web and initiatives such as SOA are in high demand,
they are merely the architectures with which business intelligence may be
delivered.

» This redbook is a strategic and comprehensive dimensional modeling
publication.

» We included best practices, as well as specific procedures to deliver systems
of this type more quickly, and with measurable and increased success rates.

» Because we want to see you succeed, and we believe this redbook has
information that can help you do that.

Further, this IBM Redbook includes:

» Detailed discussion of a dimensional model life cycle (DMDL). This was
developed to help you create functional and highly performant dimensional
models for your Bl environment.

» An extensive case study about developing a dimensional model by following
the processes and steps in the DMDL.

» A detailed analysis of an existing sample dimensional model, along with a
discussion of techniques that you can use to improve it.

» Practical and understandable examples. We present business intelligence
concepts by using examples taken from the business environment.

» Application of current, practical technologies. We present examples that are
demonstrated using technology in currently available software products,
where applicable.

» A common base of knowledge. We assume that you are already familiar with
information technology, and even online transaction processing (OLTP). This
IBM Redbook bridges the transformation and delivery of OLTP systems data
into business intelligence.

6 Dimensional Modeling: In a Business Intelligence Environment

1.3 Data modeling and business intelligence

We have discussed the evolution of information technology, and the directions it
has taken over the years. It has served many needs, and particularly those
associated with business intelligence. It is, after all, information that enables
business intelligence. And if we continue looking at the information structure, we
see that at the base level there is data. That data is collected from many sources
and integrated with technology to enhance its usefulness and meaning.

However, to finish our investigations, we must go to one more level. That is the
level that defines and maintains the structure of the data, and is the key enabler
of the usefulness of the data. That level is the data model.

While there are many technologies, techniques, and design patterns, presented
in the pages and chapters that follow, this section demonstrates, by example, a
single and simple online transaction processing (OLTP) business application
system that is then migrated to a business intelligence (Bl) system.

1.3.1 SQL, OLTP, and E/R modeling

Structured Query Language (SQL) is a data access command and control
language associated exclusively with relational databases. Databases are simply
sizeable collections of related data; such as facts, transactions, names, dates,
and places. Relational databases are those databases of a given operational
style or design pattern. As computer software languages go, SQL is best referred
to as a declarative language. Declarative languages declare; they tell some
other entity what to do without telling them how to do it. Hyper Text Markup
Language (HTML) is another declarative computer software language. HTML
tells the Web browser what the markup instructions are, but it is the Web browser
that determines how to render the given text. For example, HTML may request a
bold emphasis on a text string, but the Web browser determines that a given
installation desires a heavyweight character font and 12 point type face when
bold is requested. SQL is the command language to read, write, and define the
data structures that reside within a database.

The technology for relational database was unveiled in 1970 in a publication by
IBM researcher, E.F. Codd. However, it was not until the early to mid-1980s that
relational databases began to prove their commercial viability. At that time,
independent software vendors, such as Informix Software (originally named
Relational Database Systems), Oracle® Software (originally named Relational
Database Technologies), and Ingres Software began shipping software systems
that would serve data via receipt and processing of SQL commands. A business
application program handled the user interface. Both keyboard input and terminal
output execute some amount of business logic, but then rely on the database
server to read and write data to a shared repository, the relational database.

Chapter 1. Introduction 7

8

A project plan to develop an E/R data model

Rather than project plan, perhaps it would be better to say we are reviewing the
software development life cycle in which an online transaction processing
business application system is developed using E/R data modeling. A few more
points to consider here:

» As a phrase, software development life cycle represents an abstract concept,
a life cycle.

» The Waterfall Method is one implementation of an SDLC. In a Waterfall
Method SDLC, there are generally five to seven development and analysis
stages through which you create business application software. Figure 1-1 on
page 9 displays a Waterfall Method.

— Stage 1 of Figure 1-1 on page 9 is entitled discovery. During this phase,
you determine the requirements of the business application. For an OLTP
business application system, this includes gathering the layouts of all
printed reports and specific data to be collected during data entry.

— Stage 2 of Figure 1-1 on page 9 is entitled data model. During this phase,
you create the data model. How you create an entity relationship (E/R)
data model, and, more specifically, how you create a dimensional model,
is the topic of this IBM Redbook.

— There is a very specific and intentional dashed line drawn between Stage
2, and the remaining stages of this Waterfall Method SDLC. Stage 2 is
normally completed by a data modeler, where Stages 3, 4, and 5 are
normally performed by programmers and programmer management. This
can raise numerous project management and performance issues, which
we address throughout this redbook.

» OLTP is a type, or categorization, of a business application, and generally has
the following characteristics:

— Data reads (SQL SELECT statements) return very few data records,
generally in the range of five to one hundred and certainly fewer than
hundreds or thousands of records.

— The filter criteria for a given SQL SELECT is generally well known in
advance of execution; such as to return a customer order by order
number, report revenue by company division, and then by product stock
keeping identifier.

— The database and database server run-time environments are easily
optimized for this workload.

Dimensional Modeling: In a Business Intelligence Environment

Data Admin DeVelopers

p
! Incorrect
% ! 400 Table Mappings of

Data Model Legacy Data
1. Discovery | 2. Data model 3_5’:&2%;2(1 4.System test | 5. Cut over

? | A A

Missing Columns,
Errors in Schema

4'—' : Performance
Errors in -«

Dependencies Issues

Figure 1-1 Example of Waterfall Method, Software Development Life Cycle

Project plan issues

A number of problems display themselves in a typical project plan, as shown in
Figure 1-1. The issues include:

>

The people who gather all of the application expertise and business
knowledge to create the data model, are not the same people who author the
programming to access this data model. Optimizations and efficiencies would
be gained if the software development life cycle being employed somehow
encouraged this knowledge to propagate from the data modeling phase to the
programming and testing phases.

The application programmers are those people best enabled to find missing
columns and other errors in the data model as they begin and then complete
their work. This can create a cycle of dependency, and then greater errors as
the programmers rely on the modelers to make changes, which then often
introduces errors in other application programs which had already been
completed.

In the system test phase, further errors are uncovered, as it becomes known
that the programmers misinterpreted the large data model, incorrectly joining
tables, and other similar activities.

Often the first migration of data from the existing system to the new system
occurs in whole only towards the end of the project. This leads to discovery of
errors in the data model, missing attributes, or incorrect data type mappings.

Chapter 1. Introduction 9

10

» And then last, but certainly not all inclusive, application performance too is
one of the last elements to be tested following data migration from the
existing system.

In addition to data modeling for business intelligence, the redbook addresses the
process of data modeling, not only as a standalone topic, but as a topic to be
integrated into a software development life cycle.

An example OLTP business system with E/R data model

Figure 1-2 on page 12 displays an OLTP data model. Again, an OLTP data model
is a bit of a misnomer; it is actually a style or categorization of business
application system. OLTP systems are almost exclusively associated with E/R
data modeling. As a means to detail dimensional (data) modeling, which is
associated with Bl business application systems, both E/R modeling and
dimensional modeling are detailed in the redbook. For now, see the following:

» As shown in Figure 1-2 on page 12, E/R data models tend to cascade;
meaning one table flows to the next, picking up volume as it goes down the
data hierarchy. A customer places one or more orders, and an order has one
or more order line items. A single customer could have purchased hundreds
of order line items, as brokered through the dozens of orders placed.

» From the example in Figure 1-2 on page 12, a printed copy of a Customer
Order would have to extract (assemble) data from the Customer table, the
Customer Order table, the Order Line Item table, and perhaps others. E/R
data models optimize for writing, and as a result have little or no data
redundancy. The customer contact data, a single record in the customer
table, is listed in one location. If this customer contact data is needed to print
a given customer order, data must be read from both the Customer table and
Customer Order (and perhaps even Order Line Item) table.

» E/R data models, and therefore OLTP business applications, are optimized
for writing. E/R data models do not suffer for reading data, because the data
access methods are generally well known; and data is generally located by a
well known record key.

» If E/R data models are reasonably performant for writing and reading, why
then do we need dimensional modeling?

— E/R data models represent the data as it currently exists. From the
example in Figure 1-2 on page 12, the current state of the Customer
Account, the current Inventory level (Stock table), the current ltem Price
(Stock table), are all things that are known. However, E/R data models do
not adequately represent temporal data. That is, a history of data as it
changes over time. What was the inventory level by product each morning
at 9 AM, and by what percentage did sale revenue change and net profit
rise or fall with the last retail price change. These are examples of the

Dimensional Modeling: In a Business Intelligence Environment

types of questions that E/R models have trouble answering, but that
dimensional models can easily answer.

Although E/R models perform well for reading data, there are many
assumptions for that behavior. E/R models typically answer simple
questions which were well anticipated, such as reading a few data
records, and only then via previously created record keys. Dimensional
models are able to read vast amounts of data, in unanticipated manners,
with support for huge aggregate calculations. Where an E/R model might
not perform well, such as with sweeping ad hoc reads, dimensional
models likely can. Where dimensional models might not perform well,
such as when supporting intensive data writes, E/R models likely can.
Dimensional models rely upon a great amount of redundant data, unlike
E/R models, which have little or no redundant data. Redundant data
supports the sweeping ad hoc reads, but would not perform as well in
support of the OLTP writes.

Chapter 1. Introduction 11

Stores Database: E/R Model

Customer Calls
call Type Qp [e

Customer Number
@)- Call Code
Code Description

Call Date/Time
User ID

Call Code

Call Description
Resy, Date/Time

<— Drill down direction

I_ Customer Customer Order }
@) Customer Number @} Order Number Order Line ltem
First lame | Order Date ltem Number j‘ @
Last Name Customer Humber Pl we
Company Ship Instruct M
Address 1 Back Log _Manufact Code |
Address 2 PO Number Quantity
City Ship Date Total Price
-@-p State Ship Weight
Zip Code Ship Charge
Phone Paid Date
Stock (Inventory)
|‘E Stock Number Manufacturer
@)’ Manufacturing code Manufacturing Code * @
State Code Description Manufacturing Hame
—— State Code I Unit Price Lead Time
State Name Unit
Unit Description Catalog
Catalog Number @
Ledend r— Stock Number -
4.% Primary Key Column L wanufact. Code
@ Foreign Key Column e dle s ima
Cat. Picture
—E Indicates composite Key Cat. Advertise.

Figure 1-2 Sample OLTP schema

1.3.2 Dimensional modeling

The history of E/R modeling is tied to the birth of relational database technology.
E/R models did perform well and serve OLTP business application systems well.
However the promise of relational database to provide easy access for all to the
corporate database came into dispute because of the E/R model.

Dimensional Modeling: In a Business Intelligence Environment

An E/R data model for even a corporate division level application can have
100-200 significant data tables and thousands of columns. And all with possibly
cryptic column names, such as “mnth_end_amt_on_hnd”. This was thought to be
too complex an environment for non-IT users. And the required task of joining
three, five, nine, or more tables of data to produce a useful report was generally
considered too complex a task for an everyday user. A new approach was
required, and that approach was using dimensional modeling rather than E/R
modeling.

This new categorization of business application was called Decision Support, or
Business Intelligence, or a number of other names. Specific subtypes of these
business applications were called data warehouses, data marts, and operational
data stores.

Data warehouses and data marts still reside within relational database servers.
They still use the Structured Query Language (SQL) data access command and
control language to register their requests for service. They still place data in
tables, rows, and columns.

How data warehouses and data marts differ from OLTP systems with their E/R
data model, is also detailed, and expanded upon, throughout this redbook. As a
means to set current scope, expectations, and assumptions, in the next section
we take the E/R data model from Figure 1-2 on page 12 and convert it to a
dimensional model.

An example dimensional model

E/R data models are associated with OLTP business application systems. There
is a process you go through to accurately design and validate an E/R data model.
A business intelligence business application system may use an E/R data model,
but most commonly uses a dimensional model. A dimensional model also goes
through a design process so that it can be accurately designed and validated.
Figure 1-3 on page 14 displays a dimensional model that was created from the
E/R data model displayed in Figure 1-2 on page 12.

Chapter 1. Introduction 13

Stores Database: Dimensional Model

Customer
State - District - Re gion - Gt muntert | « ‘@
Geography
Customer Name
@} District Code

Company Name

District Name iz Sales
I
State Code @" Customer Code
State Hame 1 District Date ‘ @
Region 4@" Time Code
—@—D Product Code
Time
@) e ——— Units Sold
Order Date WHIEEES
Month Code Gast
Het Profit
Month Hame
P o Productji+Vendor»-Product Line
Quarter Hame Product
Customer Code
Year
District Date
Datel» Month Quartere Year Time Cade

Product Code « @

Units Sold
Legend Revenue
“'3’ Primary Key Column P @
@ Foreign Key Column let Profit
—_ Indicates composite key T
<— Drill down direction R ‘@
Cost

Figure 1-3 Dimensional model created from that shown in Figure 1-2 on page 12
This data model was created to support a customer new order entry OLTP

business application system. As mentioned, there is a process to create and then
validate a data model.

14 Dimensional Modeling: In a Business Intelligence Environment

The following points address the creation of a dimensional model.

»

Creation of an E/R data model has a semi-rigid and well defined procedure to
follow (there are rules called Normal Forms to which you must adhere);
dimensional modeling is somewhat less formal and less rigid. Certainly there
are design patterns and goals when creating a dimensional model, but
dimensional modeling involves a percent of style. Perhaps all of this
originates from the target audiences that E/R data models and dimensional
models each have. E/R data models serve the IT architects and
programmers, and indirectly serve users, where dimensional models directly
serve users.

The central purpose of the E/R data model in Figure 1-2 on page 12 was to
serve a sales application in a customer new order entry business application
system. A customer order is, by one viewpoint, the central event or whole
point of that application. You could also imagine it to centrally be an inventory
management system, revenue recognition system, or other system. Taking
the viewpoint of the central event being a customer placing a new order, we
see that most of the tables in Figure 1-3 on page 14 point to a table titled
Sales.

A dimensional model may have one or more subjects, but simple dimensional
models have only one subject. In the case of a single subject dimensional
model, this subject is the primary topic, fact, or event of the model, and is
joined by numerous dimensions. A synonym for dimension in this context
might be demographic trait, index into (a given fact), or temporal state.

The (central) fact table in the dimensional model shown in Figure 1-3 on
page 14 is

Sales. Sales is joined by the dimensions; Customer, Geography, Time,
and then Product and Cost.

Where E/R data models have little or no redundant data, dimensional models
typically have a large amount of redundant data. Where E/R data models
have to assemble data from numerous tables to produce anything of great
use, dimensional models store the bulk of their data in the single Fact table,
or a small number of them.

Dimensional models can read voluminous data with little or no advanced
notice, because most of the data is resident (pre-joined) in the central Fact
table. E/R data models have to assemble data and best serve small well
anticipated reads. Dimensional models would not perform as well if they were
to support OLTP writes. This is because it would take time to locate and
access redundant data, combined with generally few if any indexes. Why are
there few indexes in a dimensional model? So often the majority of the fact
table data is read, which would negate the basic reason for the index. This is
referred to as index negation, a topic discussed further in Chapter 10, “SQL
query optimizer: A primer” on page 497.

Chapter 1. Introduction 15

These are but brief examples so that you may gather an introductory
understanding of the topic of this IBM Redbook. The following is a detailed list of
the remaining contents.

1.4 Redbook contents abstract

In this section, we give a brief description of the topics we present in this IBM
Redbook and how we organize them. We cover a wide spectrum of information,
because that is what is demanded for business intelligence solutions. However,
keep in mind that the more specific focus of this redbook is on dimensional
modeling and how it impacts business intelligence solutions.

The information presented includes topics such as OLTP, business intelligence,
dimensional modeling, program architectures, and database server
architectures. Depending on your specific interest, level of detail, and job focus,
certain chapters may be more relevant to your needs than others. So, we have
organized this redbook to enable selectivity in reading.

Let us get started with a brief overview of the IBM Redbook contents:

» Chapter 1, “Introduction” includes:

— A description of the objectives and scope of the redbook, and summarizes
the value to be gained from reading this redbook.

— A summary of the evolution of information technology and describes how it
relates to dimensional modeling.

— Positioning and relationship of data modeling and business intelligence.

— An introduction to dimensional modeling, that includes descriptions and
examples of the types of data modeling.

» Chapter 2, “Business Intelligence: The destination”, includes:
— A focus on business intelligence, beginning with an overview.

— Adiscussion of the IBM Information Pyramid, an important structure to
understand as you develop your data, and data warehousing, architecture.

— A brief discussion of the impact of the World Wide Web on data modeling.

— An overview of three of the key Bl initiatives and how data modeling
impacts them.

» Chapter 3, “Data Model: The organizing structure”, includes:

— More detailed descriptions of data modeling, along with detailed
discussions about the types of data modeling.

16 Dimensional Modeling: In a Business Intelligence Environment

— An description of several data warehousing architectures, discussions
about the implementation of data warehousing architectures, and their
reliance on the data model.

— Anintroduction to the data modeling life cycle for data warehousing.
Chapter 4, “Data analysis techniques”, includes:

— A description of data analysis techniques, other than data warehousing
and BI. This includes a discussion of the various enterprise information
layers in an organization.

— An overview of Bl reporting tool architectures, which includes a
classification of Bl users based on their analytical needs. This includes
query and reporting, and multidimensional analysis techniques.

— An overview of querying and reporting tool capabilities that you can use in
your data analysis environment.

Chapter 5, “Dimensional model design life cycle”, includes:

— An introduction to a dimensional modeling design life cycle. Included are
the structure, phases, and a description of the business process
requirements.

— A description of the life cycle phases that can guide you through the
design of a complete dimensional model.

Chapter 6, “Modeling considerations”, includes:

— A discussion of considerations and issues you may encounter in the
development of a dimensional model. It provides you with examples and
alternatives for resolving these issues and challenges.

— Guidelines for converting an E/R model to a dimensional model.
Chapter 7, “Case Study: Dimensional model development”, includes:

— A case study in the development of a dimensional model. It includes a
description of the project and case study company. The company data
model requirements are described, and the dimensional design life cycle
is used to develop a model to satisfy the requirements. The objective is to
demonstrate how you can start with requirements and use the life cycle to
design dimensional models for your company.

Chapter 8, “Case Study: Analyzing a dimensional model”, includes:

— Another case study. However, this is a study analyzing an existing
dimensional model. The requirements and existing model are analyzed for
compliance. Where the model design does not meet the requirements,
you are provided with suggestions and methods to change the model.

— A case study that can help prepare you to analyze your existing
dimensional models to verify that they satisfy requirements.

Chapter 1. Introduction 17

» Chapter 9, “Managing the meta data”, includes:

— Information on meta data. Having emphasized the importance of the
dimensional model, now take a step back. Meta data is the base building
block for all data. It defines and describes the data, and gives it structure
and content.

— Definitions and descriptions of meta data types and formats. It also
provides a discussion about meta data strategy, standards, and design.

— An overview of tools used to work with meta data.
» Chapter 10, “SQL query optimizer: A primer”, includes:

— Areview of relational database server disk, memory, and process
architectures, which includes the relational database server multistage
back-end.

— A detailed and real world query optimizer case study. In this section, a
query is moved from executing in five minutes to subsecond. In addition to
the technology used to improve the performance of this example, a
methodology of SQL statement tuning and problem solving is introduced.

— A full review of the algorithms of rules and cost-based query optimizers.
This includes reading query plans, table access methods, table join
methods, table join order, b-tree+ and hash indexes, and gathering
optimizer statistics (including data distributions, temporary objects, and
others).

— A detailed review of other query optimizer technologies, to include; query
rewrite, optimizing SQL command parser use, index negation, query
optimizer directives, table partitioning, and multidimensional clustering.

» Chapter 11, “Query optimizer applied”, includes:

— An overview of the Development Life Cycle, specifically the Waterfall
method.

— A discussion of the issues encountered with the life cycle, and the subject
of process modeling within the life cycle.

— A discussion of artifacts created by a process model, such as the SQL
API, and query plan documents.

— An example of process modeling with explanations of the steps and
structure. It also includes an SQL DML example, along with an explanation
of those steps and the structure.

That is a brief description of the contents of the redbook, but it hopefully will help
guide you with your reading priorities.

18 Dimensional Modeling: In a Business Intelligence Environment

Chapter 1. Introduction 19

20 Dimensional Modeling: In a Business Intelligence Environment

Business Intelligence: The
destination

In Chapter 1, we gave an overview introduction to the scope, objectives, and
content of the redbook. We also introduced the two primary techniques used in
data modeling (E/R and Dimensional), positioned them, and then stated that in
this redbook we have a specific focus on dimensional modeling.

However, it is good to keep in mind the bigger picture and understand why we are
so interested in the topic of dimensional modeling. Simply put, it is because the
data model is the base building block for any data structure. In our case, the data
structure is a data warehouse. And, the data warehouse is the base building
block that supports business intelligence solutions - which is really the goal we
are trying to achieve. It is our destination.

Since it is our destination, we need to have an understanding of what it is and
why we want to go there.

Here we introduce the topic of business intelligence, discuss Bl activities,
describe key business intelligence initiatives, show you several data warehouse
architectures, and then describe the impact that data modeling has on them.
The specific topics we cover are:

» An overview of business intelligence
» Business intelligence initiatives

© Copyright IBM Corp. 2006. All rights reserved. 21

— Business Performance Management
— Real-time Business Intelligence
— Data Mart Consolidation
» The impact of data modeling on the key Bl initiatives

22 Dimensional Modeling: In a Business Intelligence Environment

2.1 Business intelligence overview

In the competitive world of business, the survival of a company depends on how
fast they are able to recognize changing business dynamics and challenges, and
respond correctly and quickly. Companies must also anticipate trends, identify
new opportunities, transform their strategy, and reorient resources to stay ahead
of the competition. The key to succeeding is information.

Companies collect significant volumes of data, and have access to even more
data from outside their business. They need the ability to transform this raw data
to actionable information by capturing, consolidating, organizing, storing,
distributing, analyzing, and providing quick and easy access to it. This is the
competitive advantage, but also the challenge. All of this is the goal of business
intelligence (BI). Bl helps a company create knowledge from that information to
enable better decision making and to convert those decisions into action.

Bl can help with the critical issues of a company, such as finding areas with the
best growth opportunities, understanding competition, discovering the major
profit and loss areas, recognizing trends in customer behavior, determining their
key performance indicators, and changing business processes to increase
productivity. Bl analyzes historical business data that is created by business or
derived from external sources, such as climatic conditions and demographic
data, to study a particular function or line of business. Information is used to
understand business trends, strengths, weaknesses, and to analyze competitors
and the market situation. Prior to the existence of Bl technologies, many
companies used standard conventional methods to transform data into
actionable information. This was certainly a laborious process that consumed
enormous amounts of resources and time, not to mention the human error factor.

2.1.1 Information environment

It should be clear that Bl is all about information, and the home for that
information is an enterprise data warehouse. It is no longer something that is
built for a particular advantage, it should now be seen as a business requirement.
That requirement is to have a structured and organized information environment.
Such a structure contains a number of different types and organizations of data.
And, those can be organized into a structured environment. We depict this
environment as an information pyramid in Figure 2-1 on page 24.

Chapter 2. Business Intelligence: The destination 23

24

Decision Making

N

Static
Reports,
Dashboards

Strategic
Dimensional, Data Marts,

Floor 4 Cubes.

Summarized Data,
Performance and Rolled-up Data.

Floor 3
Near 3" Normal Form, Subject 4
Area, Code and Reference tables.
Floor 2 Tactical

Staging, Detail, Denormalized, and Raw Source

Floor 1

Operational
Operational Systems

Floor 0

Figure 2-1 Information pyramid: an example

The information technology organization (IT) has traditionally seen different
types of data in the information pyramid as separate layers, and required that
data to be copied from one layer to another. However, you should look at
different types of data as different views of the same data, with different
characteristics, required to do a specific job. To emphasize that, we have labeled
them as floors, rather than layers, of information.

To move and copy the data between the floors (and typically from the lower to the
higher floors) is no longer the only option available. There are a number of
approaches that enable integration of the data in the enterprise, and there are
tools that enable those approaches. At IBM, information integration implies the
result, which is integrated information, not the approach.

We have stated that the data on each floor has different characteristics, such as
volume, structure, and access method. Now we can choose how best to
physically store and organize the data on the different floors. For example, we
can decide whether the best technology solution is to build the floors separately
or to build the floors together in a single environment. An exception is floor zero,
which, for some time, will remain separate. For example, an OLTP system may

Dimensional Modeling: In a Business Intelligence Environment

reside in another enterprise, or another country. Though separate, we still can
have access to the data and can move it into our data warehouse environment.

Floors one to five of the information pyramid can be mapped to the layers in an
existing data warehouse architecture. However, this should only be used to
supplement understanding and subsequent migration of the data. The preferred
view is one of an integrated enterprise source of data for decision making — and
a view that is current, or real-time.

2.1.2 Web services

At the start of Chapter 1, we discussed major eras in IT. One of those was about
bringing your business to the World Wide Web. The Web has revolutionized the
information industry, and dramatically changed the way the world does business.

There are many things we could discuss regarding the advantages and advances
made and supported by the Web. However, although the Web has not
significantly impacted the technology of dimensional modeling, it has certainly
resulted in a number of changes. For example, there are many new data
definitions to be included in the meta data and data model. And there has been a
significant increase in the volumes of data captured and transmitted, but this
does not directly impact the dimensional model.

Web services are a key advance that has significantly impacted applications.
The word Web in Web services means that all operations are performed using
the technology and infrastructure of the World Wide Web. The word service
represents an activity or processing performed on behalf of a requestor, such as
a person or application. Web services have existed ever since the Web was
invented. The ability of a Web browser to access e-mail and the ability to order a
product on the Internet are examples of Web services. More recently, however,
Web services increasingly make use of XML-based protocols and standards, and
it is better to think in terms of XML Web services. In this book, for simplicity, we
use the term Web services to signify XML Web services.

The promise of Web services

Web services technology is essentially a new programming paradigm to aid in
the development and deployment of loosely-coupled applications both within and
across enterprises. In the past, developers have developed most of their
applications from the ground up. The term code reuse was used, but this was
often not put into practice because developers typically only trust the code they
develop. As software development has progressed as a discipline, and as
programming languages have also advanced, the ability to reuse application
code has increased. The Java™ programming language, for example, has many
built-in class libraries that developers use.

Chapter 2. Business Intelligence: The destination 25

As applications grow, they must execute in a distributed environment. Distributed
applications provide unlimited scalability and other benefits. Defining an interface
for distributed applications has been a challenge over the years.
Language-independent technologies, such as CORBA (Common Object
Request Broker Architecture), provide a comprehensive and powerful
programming model. Other distributed technologies work well within a single
language environment, such as Java RMI (Remote Method Invocation) and
Microsoft DCOM (Distributed Common Object Model), but are not useful in a
heterogeneous systems environment.

In contrast, Web services provide a simple-to-understand interface between the
provider and the consumer of application resources using a Web Service
Description Language (WSDL). Web services also provide the following
technologies to help simplify the implementation of distributed applications:

» Application interface discovery using Universal Description, Discovery, and
Integration (UDDI)

» Application interface description, again using UDDI

» A standard message format using Simple Object Access Protocol (SOAP),
which is being developed as the XML Protocol specification by W3C

Web services enable any form of distributed processing to be performed using a
set of standard Web- and XML-based protocols and technologies. For more
detailed information about Web services and related topics, see the work effort
by the World Wide Web Consortium at:

http://www.w3c.org

In theory, the only requirements for implementing a Web service are:

» A technique to format service requests and responses

» A way to describe the service

» A method to discover the existence of the service

» The ability to transmit requests and responses to and from services across a
network

The primary technologies used to implement these requirements in Web
services are XML (format), WSDL (describe), UDDI (discover), and SOAP
(transmit). There are, however, many more capabilities (authentication, security,
transaction processing, for example) required to make Web services viable in the
enterprise, and there are numerous protocols in development to provide those
capabilities.

It is important to emphasize that one key characteristic of Web services is that
they are platform neutral and vendor independent. They are also somewhat
easier to understand and implement than earlier distributed processing efforts,
such as CORBA. Of course, Web services still need to be implemented in vendor

26 Dimensional Modeling: In a Business Intelligence Environment

http://www.w3c.org

specific environments, and this is the focus of facilities such as IBM Web
Services.

Web services architecture

The Web services architecture is defined in several layers. These layers are
illustrated in Figure 2-2.

’ Context

’ Transactions ’ Agreements ‘

|
|
| Routing | |BPEL [composition |
| Reliability | | Quality of Service|
[security | | WP [service |
XMLP[Attachments | (Interface [||"P° [Directory |
| soAP | XML Schema | | Inspection |
Protocols Descriptions Discovery

BPEL = Business Process Execution Language
XMLP = XML Protocol

Figure 2-2 Web services layered architecture

The underpinnings of the Web services architecture are WSDL and SOAP.
WSDL is an XML vocabulary used to describe the interface of a Web service, its
protocol binding and encoding, and the endpoint of the service. SOAP is a
lightweight protocol for the exchange of information in a distributed environment,
and is used to access a Web service. It is transport-protocol independent. SOAP
messages can be transported over HyperText Transfer Protocol (HTTP), for
example, but other protocols are also supported. Examples include:

» SOAP over WebSphere® MQ (Message Queuing)
» RMI (Remote Method Invocation) over IIOP (Internet Inter-ORB [Object
Request Broker] Protocol)

At present, the current SOAP standard only defines bindings for HTTP. SOAP is
rightfully seen as the base for Web application-to-application interoperability. The
fast availability of SOAP implementations, combined with wide industry backing,
has contributed to its quick adoption.

SOAP employs a XML-based RPC (Remote Procedure Call) mechanism with a
request/response message-exchange pattern. It is used by a service requestor

Chapter 2. Business Intelligence: The destination 27

to send a request envelope to a service provider. The SOAP request envelope
contains either an RPC method call or a structured XML document. Input and
output parameters, and structured XML documents are described in XML
schema. The service provider acts on a request and then sends back a SOAP
response envelope.

The existence of a Web service can be published and advertised in a public
UDDI registry. Publishing Web services in a public registry allows client
applications to discover and dynamically bind to Web services. UDDI helps
distributed application developers solve the maintenance problem caused by
constantly changing application interfaces. Developers can use internal private
registries, and public UDDI registries (hosted on the Internet by companies, such
as IBM and Microsoft) to publicize their application interfaces (as specified by
WSDL) and to discover other Web services. When a WSDL interface changes, a
developer can republish the new interface to the registry, and subsequent
access to the Web service will bind dynamically to the new interface.

IBM Web services

Two key IBM products for supporting Web services are WebSphere Studio and
the WebSphere Application Server.

WebSphere Studio contains a set of development tools for creating and
maintaining Java applications that use Web services, and it is based on an open
development framework known as Eclipse. For more details, see:

http://www.eclipse.org

WebSphere Studio provides tools for creating WSDL interfaces to Java
applications and DB2 data. You can publish Web services defined using
WebSphere Studio to a UDDI registry directly from the WebSphere Studio
environment. WebSphere Studio provides a UDDI browser.

IBM WebSphere Application Server is a J2EE-compliant Java Web Application
Server. It is an ideal platform for hosting DB2 Web service provider applications.
WebSphere Application Server includes the Apache SOAP server. For details,
see:

http://ws.apache.org/soap/

2.1.3 Activity examples

Typically, Bl solutions use different technologies for lines of business and
departments, and you can implement them in several ways. The focus of this
redbook is to explore dimensional modeling and its impact on Bl
implementations.

28 Dimensional Modeling: In a Business Intelligence Environment

http://www.eclipse.org
http://www.xml.apache.org/soap/

Business Intelligence activities include such activities as:

VVYVYVYYVYYVYVYVYYY

Multidimensional Cube Analysis
Business analysis

Clickstream analysis

Information visualization
Forecasting

Data mining (text, video, and voice)
Trending analysis

Query and reporting

Geo-spatial analysis

Enterprise portal implementation
Digital dashboards

The following are examples of Bl usage in a company:

>

Operations: Bl has an active role in helping management meet their
operational performance measurements. For example, each manager in a
retail company can receive a digital dashboard with summaries of key
performance indicators in their particular area of responsibility. This can be
areas such as a store or department, specific merchandise, loss prevention,
risk, or cash flow. Whenever the actual performance falls below a preset
threshold, Bl can send alerts to the managers indicating a potential problem.
This gives the manager the ability to monitor performance metrics, analyze
information, make proactive decisions, and act on those decisions. The
manager can visualize the impact of the changes made as a result of the
changing performance indicators on the dashboard.

Finance: Bl provides immediate access to financial budgeting and
forecasting data. That enables business decisions to be made based on
current and accurate financial data, such as personalized views of revenue
information by product, customer, merchandise, region, store, and time
period. It also enables business decision makers to develop trend revenue
forecasts with accuracy and speed, to compare and contrast revenues with
the goals, and identify the areas in which the company is performing better or
worse. Management at that point is well-armed with accurate information so
they can act effectively and in a timely fashion.

Customer Service: Bl helps organizations assess various market segments
and customers, identify potential new business, and retain existing business.
For example, you can directly correlate customer information with the sales
information. Companies that have focused on customer service and customer
relationships have typically realized significant competitive advantage.

Human Resources: Bl supports activities such as recruitment, employee
retention, and career development. Organizations can align staffing needs
with strategic goals by mapping those goals to the skills needed to achieve
them. They can then identify the recruitment practices required to bring high

Chapter 2. Business Intelligence: The destination 29

quality individuals on board and identify new potential candidates for
management. Bl also provides information critical for areas, such as
compensation planning, employee benefit planning, productivity planning,
and skills rating.

» Marketing: One of the most important beneficiaries of Bl in any company is
the marketing department. Bl helps them identify various trends in business,
analyze revenues on a daily basis, identify high performers, quantify the
impact of price changes, and identify opportunities for growth. For example, a
trucking company can analyze fuel rate increases to determine such things as
the impact on revenue and profitability, identify heavy/low impact segments,
obtain optimized trucking routes, and identify multi-modal routing
opportunities.

2.1.4 Drivers

Business intelligence permeates every area of a business enterprise. It is the
need for more and more information that drives it. Those who have access to
more and accurate information are in a position to enable better
decision-making. Information is a significant business and competitive
advantage.

Business measurements

There is an ongoing and ever demanding need for businesses to increase
revenues, reduce costs, and compete more effectively. Companies today are
under extreme pressure to deploy applications rapidly, and provide business
users with easy and faster access to business information that will help them
make the best possible decisions in a timely manner.

Business complexity

Companies today are offering and supporting an ever growing range of products
and services to a larger and more diverse set of clients than ever before. Bl
provides the sophisticated information analysis capabilities required to handle
those business complexities, such as mergers, acquisitions, and deregulation.

Business costs

There is a growing need to reduce the overhead of IT expenditures in every
company. There is increased pressure on IT to leverage their existing systems to
maximum benefit for the business. Bl widens the scope of that ability by enabling
access not only to operational and data warehouse data, but also to external
data.

30 Dimensional Modeling: In a Business Intelligence Environment

2.2 Key business initiatives

For example, we provide a brief summary of three of the key initiatives. They are
quickly becoming the differentiators as competition becomes more and more
intense. This not only applies to revenues from products and services, but also to
the internal processes and operations that can minimize production delivery
schedules and impact cost. These internal goals are significantly increasing in
importance, because they can dramatically impact the ability of the company to
meet their business performance measurements.

Business measurements and goals have come under more close scrutiny by
management and stakeholders, and the measurement time frames are much
shorter. For example, management must now be in a position to track and report
performance against quarterly goals. Missing those goals can result in a
significant response from the marketplace - and can typically be directly reflected
in a changing stakeholder value assessment.

2.2.1 Business performance management

In the dynamic business environment, increased stakeholder value has become
the main means by which business executives are measured. The ability to
improve business performance is therefore a critical requirement for
organizations. Failure to improve business performance is under close scrutiny
by stakeholders. Their voices are heard through the buying or selling of company
stock. One result of this is increased volatility of stock prices, which creates a
tense roller-coaster ride for executives. Bringing more pressure to bear, is the
fact that business performance measurement time frames are becoming ever
shorter. Quarterly targets have replaced annual ones, and the expectation of
growth and success is there at every quarter end.

To help smooth out the roller-coaster ride, businesses must react quickly to
accommodate changing marketplace demands and needs. Flexibility and
business agility are key to remaining competitive and viable. We need a holistic
approach that enables companies to align strategic and operational objectives in
order to fully manage achievement of their business performance
measurements.

The objective of BPM is to help companies improve and optimize their
operations across all aspects of the business. Business requirements, therefore,
determine what type of BPM environment is necessary. Implementing BPM,
however, is more than just about installing new technology, it also requires
organizations to review the business environment to determine if changes are
required to existing business processes to take advantage of the benefits that
BPM can provide.

Chapter 2. Business Intelligence: The destination 31

To become more proactive and responsive, businesses need the information that
gives them a single view of their enterprise. With that, they can:

» Make more informed and effective decisions
» Manage business operations and minimize disruptions

» Align strategic objectives and priorities both vertically and horizontally
throughout the business

» Establish a business environment that fosters continuous innovation and
improvement

The need to continuously refine business goals and strategies, however, requires
an IT system that can absorb these changes and help business users optimize
business processes to satisfy business objectives. BPM assists here by
providing performance metrics, or key performance indicators (KPIs), which
businesses can employ to evaluate business performance. A KPl is a
performance metric for a specific business activity that has an associated
business goal or threshold. The goal or threshold is used to determine whether
or not the business activity is performing within accepted limits. The tracking and
analysis of KPIs provides business users with the insight required for business
performance optimization.

BPM also becomes a great guide for IT departments that are asked to do more
with less. It helps them focus their resources in areas that provide the most
support to enable management to meet their business goals. They can now
prioritize their tasks and focus on those aligned with meeting business
measurements and achieving the business goals.

BPM requires a common business and technical environment that can support
the many tasks associated with performance management. These tasks include
planning, budgeting, forecasting, modeling, monitoring, analysis, and so forth.

Business integration and business intelligence applications and tools work
together to provide the information required to develop and monitor business
KPIs. When an activity is outside the KPI limits, alerts can be generated to notify
business users that corrective action needs to be taken. Business intelligence
tools are used to display KPIs and alerts, and guide business users in taking
appropriate action to correct business problems. To enable a BPM environment,
organizations may need to improve their business integration and business
intelligence systems to provide proactive and personalized analytics and reports.

Simply stated, BPM is a process that enables you to meet your business
performance measurements and objectives. A BPM solution enables that
process. It enables you to proactively monitor and manage your business
processes, and take the appropriate actions that result in you meeting your
objectives.

32 Dimensional Modeling: In a Business Intelligence Environment

There are a few words in the previous statement that require you to take action.
Here are a few examples:

» Monitor your processes. This means you have well-defined processes, and a
way to monitor them. And the monitoring should be performed on a
continuous basis.

» Manage your processes. You must be aware of their status, on a continuous
basis. That means you must be notified when the process is not performing
satisfactorily. In your well-defined process, you need to define when
performance becomes unsatisfactory. Then you must get notified so you can
take action.

» Appropriate action. You need the knowledge, flexibility, and capability to take
the appropriate action to correct problems that arise.

BPM places enormous demands on Bl applications and their associated data
warehouses to deliver the right information at the right time to the right people. To
support this, companies are evolving their Bl environments to provide (in addition
to historical data warehouse functionality) a high-performance and
enterprise-wide analytical platform with real-time capabilities. For many
organizations this is a sizable challenge, but BPM can be the incentive to move
the Bl environment to a new level of capability.

IBM has also developed a BPM Framework that enables the assembly of
components encompassing business partner products and IBM foundation
technologies. The framework includes a wide range of capabilities for modeling,
integrating, connecting, monitoring, and managing business operations within an
enterprise and across a value chain of trading partners and customers. The
unifying framework that accommodates the IBM framework is illustrated in
Figure 2-3 on page 34. This framework identifies the functional components
required for the real-time monitoring, analysis, and optimization of business
operations, and their underlying IT infrastructure.

Chapter 2. Business Intelligence: The destination 33

34

Dashboard design Business performance management capabilities
Report design

| Workplace builder | [Business modeler | | Analysistools | | Service managemert tools |

| O _L Enterprise integrated development environment

< O
Event sources/run-time components *
Warkplace O
for business User Process Information B2B Package/custom
perfarmance interaction | | integration | | integration | | integration applications
management
far business
and IT users Events *
+ Todls 1+ Common event infrastructure]
« Dashboards Events Events
: fﬂl‘e.rfgﬁeams Business or system performance monitar +
Infarmation Observation manager]_ Adaptive action Téi%t#;e
- manager {business and IT) manager o e
| fanalysis, Business plerforrnance in run-time
a'p;iset'goﬁi'gn.l management data store and % companents
parting) cube (matrics and KPls)

[oos | [warenouse || patamart |

O Partner assets/plug-ins

Figure 2-3 IBM BPM framework

Creating a unified framework is critical to the success of a BPM implementation.
BPM is a paradigm that succeeds from proactively managing the environment,
rather than reactively resolving individual business issues. There is a need,
therefore, for an architected solution that consolidates and integrates data
related to monitoring, events, alarms, and situation-related information across
the enterprise. Fracturing that enterprise view with isolated data silos defeats the
purpose of BPM. That is, it actually inhibits the ability to monitor and manage
enterprise-wide business performance.

You can satisfy the need for a unified solution by integrating the required data in
a DB2 data warehouse and using the data warehouse to feed the BPM
environment. If this is not feasible, use information integration technologies, such
as the IBM WebSphere Information Integrator, to create an integrated business
view of disparate source data. Using dependent data marts, that leverage data
from a data warehouse, is another possible solution. We do not recommend,
however, building a BPM solution using data from independent data marts, or
sourcing the data directly out of the operational systems. These approaches
involve isolated data silos that can lead to inconsistencies and inaccurate results.

IBM BPM solutions are based on DB2 relational databases, as well as a
combination of DB2 relational databases and DB2 OLAP databases. In most
cases, the BPM environment involves a multi-tier approach, consisting of existing

Dimensional Modeling: In a Business Intelligence Environment

applications, data warehouses that feed the BPM solution, BPM tools, and
packaged applications.

Implementing a BPM system results in making business performance data
available to everyone that needs it. Usually, most of this performance data has
not been available to business users prior to the BPM implementation. A BPM
solution is typically facilitated by providing the proactive distribution of the data
through graphical dashboards, rather than relying on users to search for data
they require. Most users respond positively to graphical dashboards embedded
in enterprise portals, and require little if any training in how to use them.

BPM and BI

Any Bl implementation is aimed at turning available data into information and
putting it into the hands of decision makers. It might be easy to conclude
therefore that Bl and BPM are the same thing. BPM is focused, however, on a
subset of the information delivered by a Bl system. BPM is concerned with
information that shows business performance and indicates business success or
failure. This information subset enables organizations to focus on the important
task of optimizing business performance.

Bl enables businesses to access, analyze, and use their data for decision making
purposes. It is used for long-term strategic planning, short-term tactical analysis,
and for managing the daily operational business activities. Key developments in
the use of Bl include:

» Tactical and strategic Bl are moving closer together. This is because strategic
time frames (budgeting and forecasting cycles, for example) are shrinking to
enable companies to become more responsive to business needs and
customer requirements.

» Analytic applications are used more and more for proactively delivering
business intelligence to users, rather than requiring them to discover it for
themselves. In many cases, these applications not only deliver information
about business operations, but also put actual business performance into
context by comparing it against business plans, budgets, and forecasts.

» Dashboards are the becoming the preferred method for delivering and
displaying business intelligence to users. Dashboards are more visual and
intuitive, and typically provide linkages that can enable people to take
immediate action.

» Business rules are a key requirement as companies implement so-called
closed-loop processing to use the results of business intelligence processing
to optimize business operations. This is particularly true when there is a
requirement to support automated decisions, recommendations, and actions.

Chapter 2. Business Intelligence: The destination 35

» Close to real-time (near real-time), or low-latency, business information is
becoming an important requirement as organizations increasingly make use
of business intelligence for managing and driving daily business operations.

BPM forms the underpinnings for many of the Bl developments we outline.
Specifically, BPM provides the Bl to improve operational decision making,

become more proactive and timely, and support a wide range of business

functions.

BPM enables a Bl system to tap into business events flowing through business
processes, and to measure and monitor business performance. BPM extends
traditional operational transaction processing by relating measures of business
performance to specific business goals and objectives. User alerts and
application messages can then inform business analysts and applications about
any situations that require attention. The integration of business process
monitoring with operational Bl analytics enables a closed-loop solution.

2.2.2 Real-time business intelligence

As business and technology continue to change and improve, a new phenomena
is occurring. The two originally opposite ends of the business intelligence
spectrum, namely tactical and strategic decision-making, are becoming much
more closely aligned.

There is a merging of requirements and a need for current information by
everyone. It is fueling and enabling the acceleration toward another key
capability that is called closed-loop analytics. That means the results of data
warehousing, or business intelligence, analytics are being fed back to the
operational environment. Events can now be acted upon almost immediately,
avoiding costly problems rather than simply trying to minimize their impact. This
is a significant leap forward, and can now be realized with the capability to
support real time.

The Internet is also playing a key role in this movement. For example, investors
now have access to information as never before. And, they can move their money
in and out of investments quickly. If one company is not performing, they can
quickly and easily move their investment to another. Now everyone seems to
have the need for speed. They want results, and they want them now! They want
information, and they want it in real time!

To meet the requirements and support this change in thinking and measurement,
companies are moving towards real time. Change, flexibility, and speed are now
key requirements for staying in business. Typically, tactical (or short-term)
decisions are made from the operational systems. However, that data usually
requires a good deal of analysis and time to provide benefit. And strategic (or

36 Dimensional Modeling: In a Business Intelligence Environment

long-term) decisions are made from historical data - which may exist in a data
warehouse. This process must change to support real time.

The direction is to make data for both types of decision-making available, or
accessible, from the data warehousing environment. Then you can combine,
analyze, and present it in a consistent manner to enable more informed
management decision-making. The data warehousing environment is now
fulfilling its destiny as the enterprise data repository. It is the base for all business
intelligence systems. However, that means you must get the data into the data
warehouse in a much more timely manner. Can you do it in real time?

The answer is yes, depending on your definition of real time. Regardless, the
movement to real time has be an evolution, because it requires a gradual
re-architecting of the company infrastructure and business process
re-engineering. The evolution needs to be based on business requirements and
priorities, and a sound business case. Companies will move a step at a time
along this evolution.

The various processes that supply data can work independently or in concert
with one another. One differentiator that impacts the list of processes for Getting
Data Into the data warehouse is identified in the term Continuous Loading that is
depicted in front of these processes in Figure 2-4 on page 38. That is a key
requirement for enabling real time, and brings with it a number of issues and
required product or implementation capabilities.

Getting the data into the data warehouse is, of course, of utmost importance.
Without it, there is no business intelligence. However, the real value of data
warehousing and Bl lies on the right side of Figure 2-4 on page 38. That is the
category of Getting Data Out. That data provides the information that enables
management to make more informed decisions. And, the key now is that
management works with data that is genuinely current, that is, real-time, or near
real-time, data.

Chapter 2. Business Intelligence: The destination 37

Integrating the Enterprise
it v
Concurrent Queries Personalization

. Engines with
ETL Engines Data Mining, Consumers

MQSeries Rules Base,
Campaigns

Continuous DB2 Alerts, @ @

Replication Loading

Parallel

Queues

Triggers,
Data Warehouse || [(:t-

Analytics

- - ==
; Dashboards

Content Getting Data Out!

Web Services

Getting Data In!

Figure 2-4 Real-time Bl

To make use of the current data, users must be aware of it. Many
implementations create the environment, and then simply enable users with
query capability. To increase the value received, the environment needs to be
proactive. Enable the environment to recognize important events and alert users
automatically so they can take corrective action. Or, the environment must
display current status as changes occur rather than requiring a user to ask for
current status. To enable this capability, you can define key performance
indicators (KPI) with threshold values as one way to trigger such alerts. When a
defined threshold is exceeded, the system could automatically trigger an alert.

This capability will typically require a change in your business processes. Logic
must be included in the process and imbedded in your applications. It is not
sufficient for a user to run queries or look at reports to try to identify when
processes need attention. That decision process should be added to your
application software so it can automatically be ever watchful for those processes
that exceed specific thresholds. And notify you in real time! That is a vital and
very beneficial value of real-time processing. The objective is to avoid problems
rather than just reacting to them. To avoid costly problems and issues rather than
simply trying to minimize their impact.

To implement these added capabilities requires new types of applications, such
as analytic applications and interactive information dashboards. They can
monitor processes, detect values and compare to thresholds, and display or
deliver alerts and associated real-time data to the users for immediate action.
Better still, put logic into the analytic applications to enable them to do much, or
all, of the decision processing and action initiation. This capability would require

38 Dimensional Modeling: In a Business Intelligence Environment

a good rules base for automated action taking. For situations requiring manual
intervention, provide guidance. That guidance (or guided analysis) could be
problem solving logic embedded in the analytic application. These are
capabilities that can enabile, initiate, and/or facilitate closed-loop processing. And
it is a significant competitive advantage.

Implementing real-time Bl

The implementation of near real-time Bl involves the integration of a number of
activities. These activities are required in any data warehousing or Bl
implementation, but now we have elevated the importance of the element of time.
The traditional activity categories of getting data in and getting data out are still
valid. But, now they are ongoing continuous processes rather than a set of steps
performed independently.

Figure 2-4 on page 38 depicts an overall view of real-time Bl. On one side, it
shows the various techniques for getting data into the data warehouse from the
various data sources and integrating it. We see the following examples:

» Parallel ETL Engines: Data must be extracted from the operational
environment, cleansed, and transformed before it can be placed in the data
warehouse in order to be usable for query processing and analysis. These
extract, load, transform (ETL) processes have historically been
batch-oriented. Now they must be altered to run on a continuous or
near-continuous basis. Running multiples of these processes in parallel is
another alternative for getting data into the data warehouse as quickly as
possible. Another approach is to extract and load the data, then perform any
required transformations after the data is in the data warehousing
environment. This extract, load, transform (ELT) process can result in
updating the data warehouse in a shorter time frame.

» MQSeries® queues: These queues are key in a real-time environment. They
are part of a messaging-oriented infrastructure, in this case delivered by the
WebSphere family of products. Messaging systems assume the responsibility
for delivery of the messages (data) put into their queues. They guarantee
data delivery. This is extremely important because it relieves application
programmers of that responsibility, which can significantly improve the
application programmers’ productivity and translate into reduced
development costs. As a general rule, it is always better to have systems
software do as much as possible in the application development process. The
result can be faster application delivery and at a lower cost.

» Replication: WebSphere Information Integrator - Replication Edition delivers
this capability. The capture component of replication takes the required data
from system logs, which eliminates the need for application development to
satisfy the requirement. It is another example of having the system provide
the capability you need rather than developing, and maintaining, it yourself.

Chapter 2. Business Intelligence: The destination 39

» Web services: This is a strategy where you acquire and use specific services
by downloading them from the Web. This makes them generally available to
everyone for use in the application development process. It is another
example of providing tested, reusable application modules when and where
they are needed. And, it represents a potential reduction in application
development costs.

» Information Integration: Data must also be available from external data
sources, many of which are housed in a heterogeneous data environment.
WebSphere Information Integrator is a product that can more easily enable
you to access and acquire the data from these sources and use them for
updating the data warehouse.

» The Operational Data Store (ODS) is another source of input to the data
warehouse, but is unique in that it can concurrently be used by the operational
systems. It typically contains data that comes from the operational transaction
environment, but has been cleansed and prepared for inclusion in the data
warehouse. The ODS is typically a separate sub-schema, or set of tables, and
itself a driver for continuous loading of the real-time data warehouse. As such
it is then considered as part of the data warehousing environment.

To summarize, real-time business intelligence is having access to information
about business actions as soon after the fact as is justifiable based on the
requirements. This enables access to the data for analysis and its input to the
management business decision-making process soon enough to satisfy the
requirement.

2.2.3 Data mart consolidation

A data mart is a construct that evolved from the concepts of data warehousing.
The implementation of a data warehousing environment can be a significant
undertaking, and is typically developed over a period of time. Many departments
and business areas were anxious to get the benefits of data warehousing, and
reluctant to wait for the natural evolution.

The concept of a data mart exists to satisfy the needs of these departments.
Simplistically, a data mart is a small data warehouse built to satisfy the needs of
a particular department or business area. Often the data mart was developed by
resources external to IT, and paid for by the implementing department or
business area to enable a faster implementation.

The data mart typically contains a subset of corporate data that is valuable to a
specific business unit, department, or set of users. This subset consists of
historical, summarized, and possibly detailed data captured from transaction
processing systems (called independent data marts), or from an existing
enterprise data warehouse (called dependent data marts). It is important to

40 Dimensional Modeling: In a Business Intelligence Environment

realize that the functional scope of the data mart’s users defines the data mart,
not the size of the data mart database.

Figure 2-5 depicts a data warehouse architecture, with both dependent and
independent data marts.

Operational
System

Extract, Transform,
and Load

Operational
Data Store meta data

Enterprise
Data Warehouse

Line of Business
Data Marts

Independent
Dependent Data Marts Data Marts

Figure 2-5 Data warehouse architecture with data marts

As you can see, there are a number of options for architecting a data mart. For
example:

» Data can come directly from one or more of the databases in the operational
systems, with few or no changes to the data in format or structure. This limits
the types and scope of analysis that can be performed. For example, you can
see that in this option, there may be no interaction with the data warehouse
meta data. This can result in data consistency issues.

» Data can be extracted from the operational systems and transformed to
provide a cleansed and enhanced set of data to be loaded into the data mart
by passing through an ETL process. Although the data is enhanced, it is not
consistent with, or in sync with, data from the data warehouse.

» Bypassing the data warehouse leads to the creation of an independent data
mart. It is not consistent, at any level, with the data in the data warehouse.
This is another issue impacting the credibility of reporting.

» Cleansed and transformed operational data flows into the data warehouse.
From there, dependent data marts can be created, or updated. It is key that
updates to the data marts are made during the update cycle of the data
warehouse to maintain consistency between them. This is also a major
consideration and design point, as you move to a real-time environment. At

Chapter 2. Business Intelligence: The destination 41

that time, it is good to revisit the requirements for the data mart, to see if they
are still valid.

However, there are also many other data structures that can be part of the data
warehousing environment and used for data analysis, and they use differing
implementation techniques. These fall in a category we are simply calling
analytic structures. However, based on their purpose, they could be thought of
as data marts. They include structures and techniques, such as:

Materialized query tables (MQT)
Multidimensional clustering (MDC)

Summary tables

Spreadsheets

OLAP (Online Analytical Processing) databases
Operational data stores

Federated databases

vVvyYvYyvYyYYvYyYYyvyYy

Although data marts can be of great value, there are also issues of currency and
consistency. This has resulted in recent initiatives designed to minimize the
number of data marts in a company. This is referred to as data mart
consolidation (DMC).

Data mart consolidation may sound simple at first, but there are many things to
consider. A critical requirement, as with almost any project, is executive
sponsorship, because you will be changing many existing systems on which
people have come to rely, even though the systems may be inadequate or
outmoded. To do this requires serious support from senior management. They
will be able to focus on the bigger picture and bottom-line benefits, and exercise
the authority that will enable making changes.

To help with this initiative, we constructed a data mart consolidation life cycle. |
Figure 2-6 on page 43 depicts a data mart consolidation life cycle.

42 Dimensional Modeling: In a Business Intelligence Environment

Assess Plan Design Implement Test Deploy

Investigate Existing DMC Project
Analytic Structures Scope,Issues,

Risks Involved

EDW Schema

v Target EDW or
and Architecture

Schema
Construction

Standardization

Analyze Data)
of Business rules

Quality and List of Analytical
Consistency Structures to be

consolidated
Analyze Data
Redundancy Choose

ETL Process
Development

Modifying or

Consolidation for Creating New

lementation Recommendation

- and definitions
Standardization
of Metadata
Identify Facts
and Dimensions
i
—\

[
o 8
<
L
Business/Technical i each Approach User Reports o g
Metadata of existing o
c =
data marts Identify Data {0 be Conformed Standardizing = >
— - Integration and Source to Target Reporting @ -
Existing Reporting Cleansing Effort Mapping and é’TL Environment = g
Needs and
Environment Identify Team Standardizing
E User Reports, Other Bl Tools

Hardware/Software Prepare DMC
and Inventory Plan

Environment, and
Acceptance Tests

Figure 2-6 Data mart consolidation life cycle

In the following section, we give you a brief overview of the DMC process. The
data mart consolidation life cycle consists of the following activities:

» Assessment: During this phase, we assess the following topics:

— Existing analytical structures

— Data quality and consistency

— Data redundancy

— Source systems involved

— Business and technical meta data

— Existing reporting needs

— Reporting tools and environment

— Other Bl tools

— Hardware, software, and other inventory

Note: Based on the assessment phase, create the “DMC Assessment
Findings” report.

» Planning: Key activities in the planning phase include:

— Identifying business sponsor

— Identifying analytical structures to be consolidated
— Selecting the consolidation approach

— Defining the DMC project purpose and objectives
— Defining the scope

Chapter 2. Business Intelligence: The destination 43

— ldentifying risks, constraints, and concerns

— In the planning phase above, based on the DMC Assessment Findings
report, create the Implementation Recommendation report.

» Design: Key activities involved in this phase are:

— Target EDW schema design

— Standardization of business rules and definitions
— Meta data standardization

— Identify dimensions and facts to be conformed

— Source to target mapping

— ETL design

— User reports

» Implementation: The implementation phase includes the following activities:

— Target schema construction

ETL process development

Modifying or adding user reports
Standardizing reporting environment
Standardizing other Bl tools

» Testing: This may include running in parallel with production.
» Deployment: This will include user acceptance testing.

» Loopback: Continuing the consolidation process, which loops you back to
start through some, or all, of the process again.

When you understand all the variables that enter into a data mart consolidation
project, you can see how it can become a rather daunting task. There are not
only numerous data sources with which to deal, there is the heterogeneity. That
is, data and data storage products from numerous different vendors. Consider
that they all have underlying data models that must be consolidated and
integrated. It can be a significant integration (consolidation) project.

2.2.4 The impact of dimensional modeling

We have discussed three key Bl initiatives. They are all powerful and can provide
significant benefits to the implementing companies. The common thread among
all of them is the need for data. Well, the actual need is information, but that
comes from the data. And each of those initiatives not only use data, but they
also provide it.

That data typically comes from, and goes into, the enterprise data warehouse.
That is the one common and consistent source of data in an enterprise. And as
we all know, Bl is built on, integrated with, and dependent on, the data
warehouse. Therefore, it should not be a surprise when we state that all

44 Dimensional Modeling: In a Business Intelligence Environment

companies need a robust and well designed data warehouse if they want to be
successful, and survive.

And one thing you should understand from reading this redbook, is that the
unifying structure of the data warehouse is the data model. It is the glue that
holds everything together, and so is deserving of significant attention. And to get
the information from the data warehouse, you need business intelligence
solutions.

You can begin to get a better appreciation for the impact of data modeling as you
look closer at data mart consolidation. This initiative involves merging data (and
the associated data models) from multiple data marts. And these data marts can
exist on many heterogeneous platforms and reside in many different databases
and data structures from many different vendors. As you look at the formats, data
types, and data definitions from these heterogeneous environments, you quickly
see the beginning of a complex task, and that is the integration of all these
heterogeneous components and elements, along with all the associated
applications and queries.

From all this it should become clear that the role of the data modeler is highly
significant and of utmost importance in the quest for the integrated real-time
enterprise.

Chapter 2. Business Intelligence: The destination 45

46 Dimensional Modeling: In a Business Intelligence Environment

Data modeling: The
organizing structure

Data modeling is important because it specifies the data structure, which can
impact all aspects of data usage. For example, it can have a significant impact on
performance. This is particularly true with data warehousing. And, the data
warehouse is the primary structural element in business intelligence.

Key to business intelligence is the ability to analyze huge volumes of data,
typically by means of query processing and analytic applications. And for this,
performance is critical. We provide more detail on this topic in this chapter.

In addition, we discuss the topics of:

» The primary data modeling techniques (E/R and dimensional modeling)

» Data warehouse (DW) architecture choices and the data models involved:

— Enterprise data warehouse
— Independent data marts
— Dependent data marts

» The data modeling life cycle for the data warehouse, which includes both
logical and physical modeling

© Copyright IBM Corp. 2006. All rights reserved. 47

3.1 The importance of data modeling

48

Generally speaking, a model is an abstraction and reflection of the real world.
Modeling gives us the ability to visualize what we cannot yet realize. It is the
same with data modeling. The primary aim of a data model is to make sure that
all data objects required by the business are accurately and fully represented.

From the business perspective, a data model can be easily verified because the
model is built by using notations and language which are easy to understand and
decipher.

However, from a technical perspective the data model is also detailed enough to
serve as a blueprint for the DBA when building the physical database. For
example, the model can easily be used to define the key elements, such as the
primary keys, foreign keys, and tables that will be used in the design of the data
structure.

Different approaches of data modeling

Data models are about capturing and presenting information. Every organization
has information that is typically either in the operational form (such as OLTP
applications) or the informational form (such as the data warehouse).

Traditionally, data modelers have made use of the E/R diagram, developed as
part of the data modeling process, as a communication media with the business
analysts. The focus of the E/R model is to capture the relationships between
various entities of the organization or process for which we design the model.
The E/R diagram is a tool that can help in the analysis of business requirements
and in the design of the resulting data structure.

However, the focus of the dimensional model is on the business. Dimensional
modeling gives us an improved capability to visualize the very abstract questions
that the business analysts are required to answer. Utilizing dimensional
modeling, analysts can easily understand and navigate the data structure and
fully exploit the data. Actually, data is simply a record of all business activities,
resources, and results of the organization. The data model is a well-organized
abstraction of that data. So, it is quite natural that the data model has become the
best method for understanding and managing the business of the organization.
Without a data model, it would be very difficult to organize the structure and
contents of the data in the data warehouse.

E/R and dimensional modeling, although related, are extremely different. Of
course, all dimensional models are also really E/R models. However, when we
refer to E/R models in this book, we mean normalized E/R models. Dimensional
models are denormalized.

Dimensional Modeling: In a Business Intelligence Environment

There is much debate about which method is best and the conditions under
which you should select a particular technique. People use E/R modeling
primarily when designing for highly transaction-oriented OLTP applications.
When working with data warehousing applications, E/R modeling may be good
for reporting and fixed queries, but dimensional modeling is typically better for ad
hoc query and analysis.

For the OLTP applications, the goal of a well-designed E/R data model is to
efficiently and quickly get the data inside (Insert, Update, Delete) the database.
However, on the data warehousing side, the goal of the data model
(dimensional) is to get the data out (select) of the warehouse.

In the following sections, we review and define the modeling techniques and
provide selection guidelines. We also define how to use the data modeling
techniques (E/R and Dimensional Modeling) together or independently for
various data warehouse architectures. We discuss those architectures in 3.3,
“Data warehouse architecture choices” on page 57.

3.2 Data modeling techniques

In Chapter 1, “Introduction” on page 1, we briefly discussed E/R and dimensional
data modeling techniques. In this section, we discuss these important data
modeling techniques in more detail, to understand the advantages and
disadvantages of each.

3.2.1 E/R modeling

E/R modeling is a design technique in which we store the data in highly
normalized form inside a relational database. Figure 3-1 on page 50 shows a
visualization of a normalized E/R model. It is simply to depict how the various
tables in an E/R model connect and interrelate. It is called a normalized
structure. Normalization basically involves splitting large tables of data into
smaller and smaller tables, until you have tables where no column is functionally
dependent on any other column, each row consists of a single primary key and a
set of totally independent attributes of the object that are identified by the primary
key. This type of structure is said to be in third normal form (3NF).

Chapter 3. Data modeling: The organizing structure ~ 49

50

i —— L
— T R
1 |
i T L
e = —si
s B iR d
B AR L |
I e v e i B
d=1 177 BFET T
b=t I H |
s R —TL—_L% g~k
——r:J'_— =l e ﬂL}——
=l | A _
.___l_ _____ —
e —
R

Figure 3-1 A typical E/R model

The objective of normalization is to minimize redundancy by not having the same
data stored in multiple tables. As a result, normalization can minimize any
integrity issues because SQL updates then only need to be applied to a single
table. However, queries, particularly those involving very large tables, that
include a join of the data stored in multiple normalized tables may require
additional effort and programming to achieve acceptable performance.

Although data in normalized tables is a very pure form of data and minimizes
redundancy, it can be a challenge for analysts to navigate. For example, if an
analyst must navigate a data model that requires a join of 15 tables, it may likely
be difficult and not very intuitive. This is one issue that is mitigated with a
dimensional model, because it has standard and independent dimensions.

We strongly recommend third normal form for OLTP applications since data
integrity requirements are stringent, and joins involving large numbers of rows
are minimal. Data warehousing applications, on the other hand, are mostly read
only, and therefore typically can benefit from denormalization. Denormalization
is a technique that involves duplicating data in one or more tables to minimize or
eliminate time consuming joins. In these cases, adequate controls must be put in
place to ensure that the duplicated data is always consistent in all tables to avoid
data integrity issues.

Dimensional Modeling: In a Business Intelligence Environment

Note: A table is in third normal form (3NF) if each non-key column is
independent of other non-key columns, and is dependent only on the key.
Another much-used shorthand way of defining third normal form is to say, it is
the key, the whole key, and nothing but the key.

The E/R model basically focuses on three things, entities, attributes, and
relationships. An entity is any category of an object in which the business is
interested. Each entity has a corresponding business definition, which is used to
define the boundaries of the entity — allowing you to decide whether a particular
object belongs to that category or entity. Figure 3-2 depicts an entity called
product.

Entity Relationship
Product | ——| Retail Store
* Product Type » Address of Store
* Product Name * Area
» Weight » Manager
Attributes

Figure 3-2 Example E/R model showing relationships

Product is defined as any physical item that may be stocked in one or more of the
retail stores in the company. Whether this definition is appropriate or not depends
on the use to which the model is put. In this sense, an entity may be quite specific
at one extreme, or very generic at the other extreme. Each entity has a number of
attributes associated with it. An attribute is any characteristic of an entity that
describes it and is of interest to the business.

A relationship that exists between the entities in a model describes how the
entities interact. This interaction is usually expressed as a verb. In the example,
the relationship between Product and Retail Store is defined as the retail store
stocks product.

In summary, here are advantages of the E/R modeling technique:

» It eliminates redundant data, which saves storage space, and better enables
enforcement of integrity constraints.

Chapter 3. Data modeling: The organizing structure 51

» The INSERT, UPDATE, and DELETE commands executed on a normalized
E/R model are much faster than on a denormalized model because there are
fewer redundant sources of the data, resulting in fewer executions.

» The E/R modeling technique helps capture the interrelationships among
various entities for which you are designing the database. In other words, an
E/R model is very good at representing relationships.

A disadvantage of an E/R model is that it is not as efficient when performing very
large queries involving multiple tables. In other words, an E/R model is good at
INSERT, UPDATE, or DELETE processing, but not as good for SELECT
processing.

3.2.2 Dimensional modeling

To overcome performance issues for large queries in the data warehouse, we
use dimensional models. The dimensional modeling approach provides a way
to improve query performance for summary reports without affecting data
integrity. However, that performance comes with a cost for extra storage space.
A dimensional database generally requires much more space than its relational
counterpart. However, with the ever decreasing costs of storage space, that cost
is becoming less significant.

What is a dimensional model?

A dimensional model is also commonly called a star schema. This type of model
is very popular in data warehousing because it can provide much better query
performance, especially on very large queries, than an E/R model. However, it
also has the major benefit of being easier to understand. It consists, typically, of
a large table of facts (known as a fact table), with a number of other tables
surrounding it that contain descriptive data, called dimensions. When it is drawn,
it resembles the shape of a star, therefore the name. Figure 3-3 on page 53
depicts an example star schema.

52 Dimensional Modeling: In a Business Intelligence Environment

PRODUCT

Product_ID
Product_Desc

REGION

Region_ID
Country
State

City

CUSTOMER

Customer_ID
Customer_NAME
Customer_Desc

Product_ID

Customer_ID

Region_ID

Year_ID

Month_ID

Sales TIME

Profit Year_ID
Month_ID
Week_ID
Day_ID

Figure 3-3 A star schema or a dimensional model

The dimensional model consists of two types of tables having different

characteristics. They are:

» Fact table

» Dimension table

The following sections provide more detail for understanding the two types of
tables. Figure 3-4 on page 54 depicts an example of the fact table structure.

Fact table characteristics

» The fact table contains numerical values of what you measure. For example,
a fact value of 20 might mean that 20 widgets have been sold.

» Each fact table contains the keys to associated dimension tables. These are
called foreign keys in the fact table.

» Fact tables typically contain a small number of columns.

» Compared to dimension tables, fact tables have a large number of rows.

» The information in a fact table has characteristics, such as:

— Itis numerical and used to generate aggregates and summaries.

— Data values need to be additive, or semi-additive, to enable
summarization of a large number of values.

— All facts in Segment 2 must refer directly to the dimension keys in

Segment 1 of the structure, as you see in Figure 3-4 on page 54. This

enables access to additional information from the dimension tables.

Chapter 3. Data modeling: The organizing structure

53

54

Segment1 Segment 2

&
< Ll]

Dimension keys

2551235 16d 97I 75219 $15.06 $74.43 1 132I 47.1 I _0.0436 |

»
>

156 49d 74|88|3599 | s21.64 | s$95.21 304] 96.5| 0.0030
Time Dimension Extended Cost
Customer Dimension Extended Unit Price
Product Dimension Sent Units
Promotion Dimension Total Package Weight
Salesperson Dimension Unit Weight

Figure 3-4 Fact table structure

— We have depicted examples of a good fact table design and a bad fact
table design in Figure 3-5. The bad fact table contains data that does not
follow the basic rules for fact table design. For example, the data elements
in this table contain values that are:

¢ Not numeric. Therefore, the data cannot be summarized.

* Not additive. For example, the discounts and rebates are hidden in the
unit price.

¢ Not directly related to the given key structure, which means they
cannot be not additive.

“bad” “good”
fact table fact table
dim_Time dim_Time
dim_Customer dim_Customer
’ ‘ dim_Product dim_Product
non-numeric fields dim Promotion dim_Promotion . .
= dim_Salesperson Ll
’ non-additive fields ‘ Salesperson dim_Status
Type Status full additive —
wrong granularity Unit Price quantity sold gross margin can
(non daily) sl kL extended list price || e computed
Daily Sales total allowances
YearToDate Sales :z(:(tt?n(ﬂesg:lgtsrice
Last year YTD Sales B

Figure 3-5 Good and bad fact table
We provide a more detailed discussion about fact table design in Chapter 5,

“Dimensional Model Design Life Cycle” on page 103. We now look at the second
component, the dimension table characteristics.

Dimensional Modeling: In a Business Intelligence Environment

Dimension table characteristics

>

Dimension tables contain the details about the facts. That, as an example,
enables the business analysts to better understand the data and their reports.

The dimension tables contain descriptive information about the numerical
values in the fact table. That is, they contain the attributes of the facts. For
example, the dimension tables for a marketing analysis application might
include attributes such as time period, marketing region, and product type.

Since the data in a dimension table is denormalized, it typically has a large
number of columns.

The dimension tables typically contain significantly fewer rows of data than
the fact table.

The attributes in a dimension table are typically used as row and column
headings in a report or query results display. For example, the textual
descriptions on a report come from dimension attributes. Figure 3-6 depicts
an example of this.

Report Labels and Textual Data
comes from Dimension Attributes

o —

Dimensional Model Sales $
Analysis Month | Product | Employee | peyenye
' I:I January |Choco-1 Amit 400
February [Choco-2 | Stanislav 1200
. I
< March [Choco-3 Carlos 1600
April Choco-4 Daniel 2000

Figure 3-6 The textual data in the report comes from dimension attributes

Types of dimensional models
There are three basic types of dimensional models, and they are:

»
»
»

Star model
Snowflake model
Multi-star model

Figure 3-7 on page 56 depicts these models:

Chapter 3. Data modeling: The organizing structure 55

Star Schema Snowflake Schema Multi-Star Schema

Figure 3-7 Types of dimensional models

In the following section, we give a brief summary of the three types of
dimensional models:

» Star model: Star schemas have one fact table and several dimension tables.
The dimension tables are not denormalized.

» Snowflake model: Further normalization and expansion of the dimension
tables in a star schema result in the implementation of a snowflake design. A
dimension is said to be snowflaked when the low-cardinality columns in the
dimension have been removed to separate normalized tables that then link
back into the original dimension table. Figure 3-8 depicts this.

Population Market
Pop_id Market Sales Customer
Pop_Alias Market_id Customer_id
Pop_id Market id Customer_Name
Region_id Product id [Customer_Desc
Region gltan;ket p Customer_id
ate i
Region_id /' 2ate_|d
Director ales Time
Profit
Year
Month
Family Product ? Week
Family_id Product Date_id
Intro_date Product_id
Family_id
I > Product

Figure 3-8 Snowflake schema

In this example, we expanded (snowflaked) the Product dimension by
removing the low-cardinality elements pertaining to Family, and putting them
in a separate Family dimension table. The Family table is linked to the Product
dimension table by an index entry (Family_id) in both tables. From the Product
dimension table, the Family attributes are extracted by, in this example, the
Family Intro_date. The keys of the hierarchy (Family_Family_id) are also

56 Dimensional Modeling: In a Business Intelligence Environment

included in the Family table. In a similar fashion, the Market dimension was
snowflaked.

For a more detailed discussion of the snowflake schema, refer to 6.3.7,
“Identifying dimensions that need to be snowflaked” on page 277.

» Multi-star model: A multi-star model is a dimensional model that consists of
multiple fact tables, joined together through dimensions. Figure 3-9 depicts
this, showing the two fact tables that were joined, which are EDW_Sales_Fact
and EDW_Inventory_Fact.

STORES
EMPLOYEE STOR_ID (PK)
EMPLOYEEKEY () STOR_NAVE
EMPLOYEE_Natural STOR_ADDRESS
REPORTS_T0_D amy
(FULL NAVE) STATE
FIRSTNAME 2P
(MANAGER NAE) Ang Mor
DOB
HREDATE _
ADDRESS
. EDW_INVENTORY_FACT]
oy CALENDAR = = \
And More C_DATEID_SURROGATE (PK z;‘;zi—c‘%g fl’) o
c_oATE)) Fact
O-TESR gﬁfp{tgﬁm Tabl
C_QUARTER L able
o EDW_SALE_FACT oo QUANTITY IN_INVENTORY
Fact K te e And More
EMPLOYEEKEY (FK)
Table |Coocam —
'SUPPLIERKEY (FK)
DATEID (FK)
(POSTRANSID)
saLesary,
UNTIPRICE —
SALESPRIGE VENDOR
Z‘Tf;‘:‘u"; . SUPPLIERKEY (PK)
SUPPLIERID_Natural
{(COMPANYNAME)
(CONTACTNANE)
ADDRESS
amy
CUSTOMER REGION
oo SUER POSTALCODE
'CUSTOMERKEY (PK) COUNTRY
e
CONTACTNAME And More PRODUCT
ADDRESS PRODUCTKEY (PK)
amy PRODUCTID NATURAL
REGION PRODUCTNAVE
POSTALCODE CATERGORYNAME
COUNTRY CATEGORYDESC
PHONE QUANTITYPERUNIT
Fax And More
\nd More

Figure 3-9 Multi-star model

3.3 Data warehouse architecture choices

In this section, we describe three architectural approaches for data warehousing.
The approach, or combination of approaches, you select impact the data
modeling requirement.

The data warehouse architecture will determine, or be determined by, the
locations of the data warehouses and data marts themselves, and where the
control resides. For example, the data can reside in a central location that is
managed centrally. Alternatively, the data can reside in distributed local and/or
remote locations that are either managed centrally or independently.

Chapter 3. Data modeling: The organizing structure 57

Here we describe three architectural approaches, listed below and depicted in
Figure 3-10:

» Enterprise data warehouse (EDW)
» Independent data marts
» Dependent data marts

You can also use these architectural choices in combinations. The most typical
example of which is combining the EDW and dependent data marts. In this
instance, the data marts receive data from the EDW, rather than directly from the
staging area.

Source Independent Data Marts

g [PiSIp;¢

%
a2 -
2" |

Interconnected (Dependent) Enterprise (EDW)
Data Marts

Figure 3-10 Various data warehouse architectures

3.3.1 Enterprise data warehouse

An enterprise data warehouse is one that will support all, or a large part, of the
business requirement for a more fully integrated data warehousing environment
that has a high degree of data access and usage across departments or lines of
business. That is, the data warehouse is designed and constructed based on the
needs of the business as a whole. Consider it a common repository for
decision-support data that is available across the entire organization, or a large
subset of that data. We use the term Enterprise here to reflect the scope of data
access and usage, not the physical structure.

Figure 3-11 on page 59 shows an architecture diagram for an enterprise data
warehouse.

58 Dimensional Modeling: In a Business Intelligence Environment

Staging Area
Source - Load
Services: Data
Systems R U
Cleaning Mart
Combining Dimensional Model
Extract Quality assure Load
~—®| Sorting > EDW
Matching
Conform Dimensions L
Conform Facts D ‘
Verify ‘
More... p
Analyst Reports

Figure 3-11 Enterprise data warehouse architecture

This type of data warehouse is characterized as having all the data under central
management. However, centralization does not necessarily imply that all the
data is in one location or in one common systems environment. That is, it is
centralized, but logically centralized rather than physically centralized. When this
is the case, by design, it then may also be referred to as a hub and spoke
implementation. The key point is that the environment is managed as a single
integrated entity.

Note: The enterprise data warehouse may also be called a Hub and Spoke
data warehouse implementation if the control is logically centralized even if the
data is spread out and physically distributed, such as the EDW and data
marts, as shown in Figure 3-11.

3.3.2 Independent data mart architecture

An independent data mart architecture, as the name implies, is comprised of
standalone data marts that are controlled by particular workgroups, departments,
or lines of business. They are typically built solely to meet the particular needs of
that particular workgroup, department, or line of business. Although there could
be, there typically is no connectivity with data marts in other workgroups,
departments, or lines of business. Therefore, these data marts do not share any
conformed dimensions and conformed facts between them.

This is one of the concerns when using an independent data mart. The data in
each may be at a different level of currency, and the data definitions may not be
consistent - even for data elements with the same name.

For example, let us assume that data mart#1 and data mart#2, as shown in
Figure 3-12 on page 60, have a customer dimension. However, since they do not
share conformed dimensions, it means that these two data marts must each
implement their own version of a customer dimension. It is these types of
decisions that can lead, for example, to inconsistent and non-current sources of

Chapter 3. Data modeling: The organizing structure 59

data on independent data marts in an enterprise. And this can result in
inconsistent and non-current sources of data that can lead to inaccurate decision

making
Source Staging Area Independent User
Systems Data Mart #1 Reports
Services: D‘
= Cleaning
—® - Combining [— % 4—‘
= Quality -
= Sorting
Non-conformed
Dimensions and Facts
Staging Area Independent
Services: Data Mart #2
- Cleaning Ij ‘
— | = Combining ’
= Quality 4—‘ .
= Sorting -

Figure 3-12 Independent data warehouse architecture

Independent data marts are primary candidates for data mart consolidation for
companies around the world today. The proliferation of such independent data
marts has resulted in issues such as:

» Increased hardware and software costs for the numerous data marts
» Increased resource requirements for support and maintenance

» Development of many extract, transform, and load (ETL) processes
» Many redundant and inconsistent implementations of the same data

» Lack of a common data model, and common data definitions, leading to
inconsistent and inaccurate analyses and reports

» Time spent, and delays encountered, while deciding what data can be used,
and for what purpose

» Concern and risk of making decisions based on data that may not be
accurate, consistent, or current

» No data integration or consistency across the data marts

» Inconsistent reports due to the different levels of data currency stemming
from differing update cycles; and worse yet, data from differing data sources

» Many heterogeneous hardware platforms and software environments that
were implemented, because of cost, available applications, or personal
preference, resulting in even more inconsistency and lack of integration

60 Dimensional Modeling: In a Business Intelligence Environment

For more detailed information about data mart consolidation specific initiatives,
refer to the following IBM Redbook:

» Data Mart Consolidation: Getting Control of Your Enterprise Information,
SG24-6653

3.3.3 Dependent data mart architecture

An interconnected data mart architecture is basically a distributed
implementation. Although separate data marts are implemented in a particular
workgroup, department, or line of business, they are integrated, or
interconnected, to provide a more global view of the data. These data marts are
connected to each other using, for example, conformed dimensions and
conformed facts. For example, look at Figure 3-13. Assume that data mart#1 and
data mart#2 both use a customer dimension. When we say that these data marts
share conformed dimensions, it means that the two data marts implement the
same common version of a customer dimension. Also, each of these data marts
typically has a common staging area. At the highest level of integration, the
combination of all dependent data marts could be thought of as a distributed
enterprise data warehouse.

Figure 3-13 shows the architecture for dependent data marts. In the
implementation previously mentioned, where the EDW and dependent data mart
architectures are combined, the Staging Area is basically replaced by the EDW.

Staging Area Data Mart #1

Source (or EDW) Ij ‘
Systems Load 2
Services: [’ =
Extract Cleaning
— = 1
- Combining (}
~ Sorting . Conformed Dimensions
Source Transformation and
Systems - Sorting Confo@Facts
= Matching
Extract = More... Ij ‘
Load » . ‘ ‘
o
Data Mart #2

Figure 3-13 Dependent data mart architecture

3.4 Data models and data warehousing architectures

Now that we have an understanding of the various data warehouse architectures,
let us spend time investigating the components of each of the implementations.

Chapter 3. Data modeling: The organizing structure 61

The primary focus here is to understand how the data models are used jointly or
independently to design these data warehouse architectures.

3.4.1 Enterprise data warehouse

Figure 3-14 shows the primary components of the enterprise data warehousing
architecture. It also shows the type of data model (E/R or Dimensional) on which
each of the components is based.

Staging Area EDW
Data Mart
Source Load
Systems ="
Dimensional
Extract Load Model
— -
a4
.
Normalized/Denormalized Normalized User
ER Model ER Model Reports

Figure 3-14 Data models in the enterprise data warehousing environment

Source systems

The source systems are the operational databases of the enterprise. As such,
they are typically in 3NF and represented by E/R models. However, they can also
be dimensional models or other file structures. They are typically created and
used by the applications that capture the transactions of the business. In most
cases, they are highly normalized for fast performance on transactions, using the
typical insert, update, and delete processing. The priorities of a
transaction-oriented source system are performance and high availability.

Data staging area

The staging area is the place where the extracted and transformed data is placed
in preparation for being loaded into the data warehouse. As you see in

Figure 3-14, the data staging area is primarily in 3NF, and represented by an E/R
model. However, the staging area may also contain denormalized models.

Enterprise data warehouse

As shown in Figure 3-14, the EDW is primarily in 3NF and based on an E/R data
model. Key here is that we differentiate between the data warehouse and the
data warehousing environment. That is, within the data warehousing

62 Dimensional Modeling: In a Business Intelligence Environment

environment, there can also be dimensional models - in the form of dependent
data marts. The analysts can query the data warehouse directly, or through a
data mart which is populated from the data warehouse. The latter may improve
the ad hoc query performance and availability depending on the configuration.

Data mart
The data marts in the enterprise data warehousing environment are based on a
dimensional model, and could be any of the following types of schema:

» Star
» Snowflake
» Multi-Star

And, those data marts employ conformed dimensions and conformed facts.

3.4.2 Independent data mart architecture

Figure 3-15 shows the primary components in the independent data mart
architecture. It also shows the type of data model (E/R or Dimensional) upon
which each component is based.

Staging Area Independent
Source User
Systems Data Mart #1 REorts
Uy
Dimensional
Model
Normalized {}
ER Model Non-conformed
Dimensions and Facts
Staging Area
Independent
Data Mart #2
o
Dimensional
Model
Normalized
ER Model

Figure 3-15 Data models in an independent data mart architecture

Chapter 3. Data modeling: The organizing structure 63

The descriptions of the components of the independent data mart architecture
are as follows:

Source systems

The source systems are typically in 3NF and based on an E/R model. However,
they can include dimensional models and other file structures. They are the data
stores used by the applications that capture the transactions of the business. The
source systems are highly normalized for fast performance on transactions,
using the typical insert, update, and delete processing. The priorities of a
transaction-oriented source system are performance and high availability.

Data staging area

The staging area is the place where the extracted and transformed data is placed
in preparation for being loaded into the data warehouse. As shown in Figure 3-15
on page 63, the data staging area is primarily in 3NF, and represented by an E/R
model. However, the staging area may also contain denormalized models. In
case of independent data warehouse architecture, there are separate staging
areas for each data mart and therefore no sharing of data between these
disparate staging areas.

Independent data marts

As shown in Figure 3-15 on page 63, the data marts are based on a dimensional
model which can be any of the following types of schemas:

» Star
» Snowflake
» Multi-Star

The data marts in the independent data warehouse are not connected to each
other because they are not designed using conformed dimensions and
conformed facts. Here again, this can result in inconsistent and old, out of date
sources of data that can lead to inaccurate decision making.

3.4.3 Dependent data mart architecture

The dependent data mart, as the name implies, is dependent on something. And,
that something is the enterprise data warehouse.

That means that the data for the dependent data mart comes from the EDW.
Therefore, the data loaded into the dependent data mart is already transformed,
cleansed, and consistent. The primary concern when using a data mart is the
currency of the data, or how fresh it is. That is, what is the date and time of the
last extract of data from the EDW that was loaded into the dependent data mart.

64 Dimensional Modeling: In a Business Intelligence Environment

And, when data is used from multiple data marts, care must be taken to assure
that the freshness of the data is consistent across them.

Figure 3-16 on page 65 shows the components of a dependent data mart
architecture, and the type of data model upon which it is based.

EDW

User
Data Mart #1 Reports

- m
G

Conformed Dimensions

and
Conf@facts
e
x x‘

Dimensional
Model

Normalized E/R Model

Figure 3-16 Data models in a dependent data mart architecture

The descriptions of the components of a dependent data mart architecture are as
follows:

Source systems
The source system for the dependent data mart is the EDW.

Data staging area

Since data is coming from the EDW, there is no requirement for a data staging
area.

Dependent data marts

The data marts are based on a dimensional model. The dimensional model can
be any of the following schemas:

» Star
» Snowflake
» Multi-Star

The data marts are based on conformed dimensions and conformed facts.

Chapter 3. Data modeling: The organizing structure 65

3.5 Data modeling life cycle

In this section, we describe a data modeling life cycle. It is a straight forward
process of transforming the business requirements to fulfill the objectives for
storing, maintaining, and accessing the data within IT systems. The result is a
logical and physical data model for an enterprise data warehouse.

We describe a specific life cycle to design a dimensional model (star schema) in
Chapter 5, “Dimensional Model Design Life Cycle” on page 103.

3.5.1 Modeling components

The goal of the data modeling life cycle is primarily the creation of a storage area
for the business data. That area comes from the logical and physical data
modeling stages, as depicted in Figure 3-17.

Data Modeling Life Cycle

i Fulfilled Business
Business Logical Data Physical Data Requirements

Requirements ; ;
q Modeling Modeling for Data Storage

Figure 3-17 A generic data modeling life cycle

In the context of data warehousing, data modeling is a critical activity. The
complexity of the business and its needs for business intelligence are a real
challenge for data modelers. We start now with a brief overview of the life cycle
components:

» Logical data modeling: This component defines a network of entities and
relationships representing the business information structures and rules. The
entities are representations of business terms of relevance to the business,
such as: involved party, location, product, transaction, and event. The
relationships are representations of associations between entities. An entity
characterizes attributes, such as name, description, cost, sale price, and
business code. Figure 3-18 on page 67 is an example of a logical model.

66 Dimensional Modeling: In a Business Intelligence Environment

cd Logical Model

Involved Party Product
* PK Involved Party ID: * PK Product ID:
Name: Name:
Description: Description:
Organization: Classification:
Address:
+ (PK) PK_Involved Party() * (PK) PK_Product(

. 2

Transaction

* PK Transaction ID:
Involved Party ID:
Product ID:
Transaction Type:

Net Cash Flow Amount

+ (PK) PK_Transaction()

Figure 3-18 A logical model representation

» Physical data modeling: This component maps the logical data model to the

target database management system (DBMS) in a manner that meets the

system performance and storage volume requirements. The physical
database design converts the logical data entities to physical storage (such
as tables and proprietary storage) of the target DBMS or secondary storage

medium. The physical database design is composed of the Data Definition

Language (DDL) that implements the database, an information model
representing the physical structures and data elements making up the
database, and entries in the data dictionary documenting the structures and

elements of the

design. An example of the DDL for the table named

transaction (TXN) is in Example 3-1.

Example 3-1 Sample DDL

create table TXN
(TXN_ID
PPN_DTM
SRC_STM_ID
UNQ_ID_SRC_STM
MSR_PRD_ID
TXN_TP_ID
ENVT_TP_ID
UoM_ID
TXN_VAL_DT
TXN_BOOK_DT
NET_CASH_FLOW_AMT

INTEGER not null,
TIMESTAMP,
INTEGER,
CHAR(64) ,
INTEGER,
INTEGER,
INTEGER,
INTEGER,

DATE,
DATE,
NUMERIC(14,2),

Chapter 3. Data modeling: The organizing structure

67

constraint P_TXNXPK primary key
(TXN_ID)

3.5.2 Data warehousing

In the 3.3, “Data warehouse architecture choices” on page 57, we describe data
warehousing concepts and possible architectures. In Figure 3-19, we depict an
example enterprise data warehouse, where the arrows show the data flow
among components.

Data Warehouse Environment

Sf\g;g —> (System of Record) »| Data
Full history in 34 Normal Form Marts

No user access

------ fn| 73 I

1
1
1
1
1
d Data Warehouse
:
1
1
:
1

Source Summary Area Analytical Area
systems Full history |—»| MD model
Full history

User access
User access

Figure 3-19 Enterprise data warehouse environment

The DW components differ not only by content of data but also by the way they
store the data and by whom it can be accessed.

» Staging area: For handling data extracted from source systems. There can be
data transformations at this point and/or as the data is loaded into the data
warehouse. The structure of the staging area depends on the approach and
tools used for the extract, transform, and load (ETL) processes. The data
model design affects not only performance, but also scalability and ability to
process new data without recreating the entire model.

» Data warehouse: This is the area, also called the system of record (SOR),
that contains the history data in 3NF and is typically not accessed for query
and analysis. Use it for populating the summary area, analytical areas, and
the dependent data marts.

» Summary area: This area contains aggregations. Structures are usually
derived from the data warehouse where one or more attributes are at the
higher grain (less detail) than in the data warehouse. These are constructed
for high performance data analysis where low level detail is not required.

68 Dimensional Modeling: In a Business Intelligence Environment

» Analytical area: Contains multidimensional (MD) structures, such as the star
schema, snowflakes, or multi-star schemas, constructed for high performance
data analysis.

3.5.3 Conceptual design

The conceptual design represents an early basis for design reviews, including
confirmation that the business requirements are sufficiently described and that
there is an available solution. From this point starts the logical data modeling
which transforms the business requirements into the context of the
data/information necessary to be stored, accessed, and maintained.

3.5.4 Logical data modeling

In this section, we focus on the modeling of data warehouse. First we look at the
logical data model. The primary purpose of logical data modeling is to document
the business information structures, processes, rules, and relationships by a
single view - the logical data model.

The logical data model helps to address the following:
» Validation of the functional application model against business requirements

» The product and implementation independent requirements for the physical
database design (Physical Data Modeling)

» Clear and unique identification of all business entities in the system along with
their relations, by the logical model

Note: What happens if we do not have the logical data model?

Without the logical data model, the stored business information is described
by a functional model or application (such as ETL or OLAP). Without the
logical data model, there is no single view of all data, and data normalization is
impossible. In this case, the physical data model has to be designed from a
functional model. This will potentially cause performance problems, and data
inconsistency and redundancies, which can result in an inefficient physical
design.

Design steps in logical modeling

The design activity of logical data modeling of the data warehouse consists of the
following steps:

1. Identification of entities, attributes, and relationships

2. Normalization and identification of entities
3. Merging the ETL functional model with the logical data model

Chapter 3. Data modeling: The organizing structure 69

4.

Validation of the logical model against business requirements

We now discuss each of the tasks in detail.

One - Identification of entities, attributes, and relationships
This step consists of the following activities:

1.

Review available documentation for the project, including the scope of the
project and information about the source systems from where data is loaded.
Look for business requirements, process models, profiles, architectural
design, and data models.

Create a list of nouns representing general categories of information required
to be stored in the data warehouse. Review this entity list with subject matter
experts. The nouns should represent standalone concepts rather than
attributes or subsets of something larger.

From the noun list, identify the entities. An entity is a generalization of the
concepts, involved parties, products, arrangements, locations, or events
about which the system store informations. Entities may occur directly in the
list or may be names for collections of nouns in the list. Each entity name
must be unique and meaningful. Nouns representing out-of-scope concepts
and implementation concepts are not logical data model entities.

Once each entity has been defined, determine its relationships with other
entities. Each entity may have multiple relationships with other entities.
However, a single relationship is only held between two entities. When
analyzing the relationships between entities, it is important that the
relationships are analyzed from the context of the business view. Each
relationship is considered bidirectional and granted names for each side of
the relationship.

Identify the associated cardinalities (numbers of occurrences of one entity
relative to another entity) and describe it. Cardinality refers to the minimum
and maximum numbers of occurrences implied by the existence of two
entities participating in a relationship.

Identify the attributes or characteristics of the entities that are relevant to the
business, and the primary key for each entity. The primary key is made up of
is the subset of attributes that uniquely identify each entity. Attributes must be
atomic. That is, they cannot be further decomposed to simpler elements.

Relationships, cardinalities, and inter-attribute dependencies are usually
derived from business rules.

For each entity and attribute record, define a text description in the data
dictionary that clearly represents the element from a business point of view.

70 Dimensional Modeling: In a Business Intelligence Environment

Two - Normalization and identification of entities

Normalizing the model means removing structural redundancies and
inconsistencies. The recommended approach is to proceed in taking the model
to: first normal form, then second normal form, and finally to third normal form.
The third normal form is used for the data warehouse. This is where necessary
detail and historical data is kept, typically in an E/R model.

The primary reason for a data warehouse is to enable data query and analysis to
provide information for decision making. However, as the volume of data grows in
an E/R model, performance issues may arise. Thus, one of the reasons for the
dimensional model.

Dimensional modeling is a technique that can provide the required performance
for query and analysis on huge volumes of data. It has since become the defacto
technique for data warehousing analytics, and that is why it is the primary subject
of this redbook. There is more detailed information about dimensional modeling
in Chapter 5, “Dimensional Model Design Life Cycle” on page 103.

To prepare for dimensional modeling and analytics, the data in the data
warehouse must be formatted properly. The following list briefly describes
activities involved in this formatting:

1. Repeating Groups: The repeating attribute groups must be removed because
they are indicative of the existence of another entity. Each set is an instance
of the new entity and must contain the primary key of the original entity as a
foreign key. After these sets are removed and made separate entities, the
model is said to be in first normal form.

2. Functional dependencies: Any partial functional dependencies among
attributes in the entities must be removed. In entities that have primary keys
comprised of more than one attribute, non-key attributes may be a function of
the entire key or of part of the key. In the former case, the attribute is said to
be fully functionally dependent. In the latter case, the attribute is said to be
partially functionally dependent. Partially functionally dependent attributes are
indicative of the existence of another entity and should be removed from the
original entity. The primary key of the new entity is that part of the primary key
of the original entity that was involved in the partial dependence. At this point,
the model is said to be in second normal form.

3. Transitive dependencies: Transitive dependencies among attributes in the
entities must be removed. Mutually dependent non-key attributes are
indicative of the existence of another entity. One of the dependent attributes
is said to be dependent on the primary key of the original entity. The other
mutually dependent attributes are said to be transitively dependent on the
primary key. The dependent attribute is left in the original entity as a foreign
key. The transitively dependent attributes are removed. A new entity is
formed whose primary key is the dependent attribute in the original entity and

Chapter 3. Data modeling: The organizing structure 71

whose other attributes are the transitively dependent attributes of the original
entity. The model is now said to be in third normal form.

4. Primary key resolution: Instances where multiple entities have the same
primary key and these instances must be resolved. During the normalization
process, it may be found that multiple entities have the same primary keys.
These entities should only be merged if all the joined attributes are valid for all
instances of every entity. If this is not the case, a super/subtype structure
should be developed where the shared attributes are placed in the super-type
and the unique attributes are in separate subtypes.

Three - Merging the ETL functional model with the logical model
In this step, we do the following:

1. Entities in the logical data model should be mappable to source systems.

2. Attributes in the entities are to be created, read, updated, and deleted by data
flows in the ETL functional model and analytic applications.

3. The processes of the ETL functional model should maintain the relationships
and cardinalities of the E/R model and the values of the attributes.

Four - Validation of the logical model against business requirements
Consider the following points for validation and verification of the data model:

1. Each entity should represent an involved party, location, product, transaction,
or event relevant to the business.

2. The logical data model should include all information the data warehouse
needs to store about the business.

3. Each entity should have a name, a primary key, and one or more attributes,
and enter into one or more relationships with other entities.

4. Each relationship should have correct cardinalities that reflect the needs of
the business.

5. Each entity should be properly normalized.

6. Each entity and attribute should be accounted for in the data warehouse, and
related to functions or processes such as ETL, real-time DW, and DW
housekeeping.

72 Dimensional Modeling: In a Business Intelligence Environment

Note: Important guidelines for developing the model for the DW are:

» Focus on staying within the scope of the data warehouse system being
developed.

» Use any existing data models that you have as a starting point. However,
do not just accept it as is. If required, modify it and enhance it, so that it
provides an accurate representation of business data requirements.

» The high-level data model should include representation for potential future
data and relationships. This requires good knowledge of company plans for
the future.

» It is often useful to first assemble a draft entity relationship diagram early
after creation of the noun list and then review it with client staff through
successive interviews or group sessions. By doing so, review sessions will
have more focus. Following the initial first draft, continuous client
involvement in data model development is critical for success.

3.5.5 Physical data modeling

In this section, we focus on physical data modeling of the main storage of the
data warehouse. The data warehouse provides a reliable single view of the data
at the required level of detail, along with the necessary history data for the
enterprise. Data modeling for the analytical area (dimensional model) or the
summary area (see Figure 3-19 on page 68) is discussed in more detail in
Chapter 5, “Dimensional Model Design Life Cycle” on page 103.

Introduction to physical modeling

The objective of physical data modeling is the mapping of the logical data model
to the physical structures of the RDBMS system hosting the data warehouse.
This involves defining physical RDBMS structures, such as tables and data types
to use when storing the data. It may also involve the definition of new data
structures for enhancing query performance. However, you must do it without
changing the meaning of the logical data model schema.

Note: What happens if there is no physical database design?
» We generate DDL from the logical data model.

» The final database is fully normalized without additional tables or attributes
for improving performance.

Chapter 3. Data modeling: The organizing structure 73

Other important factors to consider:
There are important factors to consider while designing the physical model. For
example:

» You need tools for physical data modeling, such as:

— Case tools for maintaining the physical data model (as well as the logical
data model)

— Database performance tools
— Meta data management tools
» Scalability of the design, and the physical RDBMS
» Queries, ETL, and other applications that use the data warehouse
» Use of an abstracted data model for performance
» Operation/Maintenance of DW (housekeeping)

Note: How much does physical data modeling in OLTP differ from physical
modeling for the data warehouse? The answer is, not much. At the conceptual
model level, it differs primarily in performance design. The key difference is
that in OLTP, we are primarily concerned with data and transaction volumes,
where with the DW we must focus on load performance, for population of the
analytical areas and the summary tables by batch/real-time applications, and
on performance of the analytical queries.

Physical design activities for the data warehouse
We divide the physical design activity for the data warehouse into the following
steps:

One - Physical modeling of entities and attributes
In this phase, we do the following:
1. For each entity in the logical data model, we define an RDBMS table. We

document this activity and assign the name compatible with the common
DBMS and according to your company naming convention.

2. For each attribute in the entity, we identify a column and assign the name
compatible with the common DBMS naming syntax. We define RDBMS
specific data types, such as character, varchar, integer, float, and decimal.

3. We define Primary and Foreign keys of the entities to the tables.

Note: Before starting any data warehousing project, it is a good practice to
establish within the company a common naming convention for business and
technical objects, along with recommended data types in the data directory.

74 Dimensional Modeling: In a Business Intelligence Environment

Two - Build the DDL
The following is a list of activities for this step:

Create target database.

Define the target database vendor.

Connect to target database.

Generate DDL by a preferred Case tool.

Implement the DDL code using Case tool or a script.

akrwN~

Three - Performance design and tuning

In this step, we comment briefly about how to proceed with the performance
design and tuning for the data warehouse. We discuss tuning the population of
the E/R, rather than optimizing query performance against the data warehouse.
Query performance against the data warehouse is typically supported by using
summary tables, analytical data marts, and derived data marts, as we have seen
in Figure 3-19 on page 68.

The two primary processes for populating the E/R model of the warehouse are
batch and real time. In batch mode, the E/R model is typically populated using
custom applications, ETL tools, or native database utilities that deliver good
performance. It is much the same with real time, but with modifications.

In a real-time environment, you typically must change process models. The
objective is to move to more of a continuous load/update scenario. It cannot be
achieved by simply moving data faster. The processes must be changed to
enable the data to be made available faster. New techniques should also be
considered. For example, rather than the typical ETL process many are moving
to an ELT process. That is, the data is extracted and loaded. Then, the required
transformations are performed. This can enable a performance improvement.

Note: Performance is dependent on the physical data structures of RDBMS.
Altering or adding more appropriate physical structures may possibly improve
the performance of query/extraction/replication. However, it may also increase
the load time of the data warehouse. Performance tuning is a cost
minimization issue. For example, performance can always be improved by
adding more CPU and I/O resources. But the objective is to find a compromise
between acceptable performance and total cost of the system.

Four - Verification of physical data modeling process
At the end of physical design, check the following list for completed activities:

1. Generated physical model DDL script should properly define the physical
structures along with performance enhancements.

2. Good documentation of the physical design should exist in the case tool used.

Chapter 3. Data modeling: The organizing structure 75

3. Each entity of logical design should represent a physical table with the
appropriate attributes and relations.

4. Each relationship should describe correct cardinalities (one to one, one to n,
and nto n).

5. Each entity and attribute should be properly described in the data dictionary.
6. All capacity estimates should be validated.
In this section, we have discussed the data modeling techniques for data

warehousing. In Chapter 5, “Dimensional Model Design Life Cycle” on page 103,
we discuss in detail the technique for designing a dimensional model.

76 Dimensional Modeling: In a Business Intelligence Environment

Data analysis techniques

In this chapter, we focus on data analysis techniques used in data warehousing.
This is, after all, the primary reason for a data warehouse. We do not intend this
to be an all-inclusive treatise on the subject, but an overview so you have a good
general understanding.

We discuss the following topics:

The information pyramid and associated reporting that you can perform
Bl reporting tool architectures

Classification of Bl users based on analytical needs

Query and reporting

Multidimensional analysis techniques:

— Slice and dice

— Pivoting

— Dirill-up, drill-down, and drill-across

— Roll-up and roll-down

» Query and reporting tools

vyvyvyyy

© Copyright IBM Corp. 2006. All rights reserved. 77

4.1 Information pyramid

Every enterprise produces regulatory, statutory, and internal reports on a regular
basis. The reports are predefined documents composed from tables, summaries,
or charts, containing business information consisting of measures and tables
with a description of columns and rows. The target users are auditors,
governmental regulatory institutions, shareholders, internal users from areas
such as finance, or from the top management of a company. This says that there
is a need for information in the form of analytics, dashboards, queries, and
reports by all levels of people in an organization. The focus of the IT department
is to provide for the analysis and business reporting needs of all company
decision makers.

Gone are the days when you could plan and manage business operations
effectively by using monthly batch reports, and when IT organizations had
months to implement new applications. Today companies need to deploy
informational applications rapidly, and provide business users with easy and fast
access to business information that reflects the rapidly changing business
environment. In short, the pressure on the IT department to deliver the
information to the business continues to dramatically increase.

In this section, we focus on different information environments in the
organization, and discuss how to accomplish data analysis and reporting from
each of them.

4.1.1 The information environment

Consider the information pyramid in Figure 4-1 on page 79. The information
pyramid depicts several environments or levels within an organization where the
information may reside, in what form, and for what duration. Traditionally, IT has
seen these levels of data as separate, with the requirement of copying data from
one level to another for appropriate usage.

However, these different levels should be thought of simply as different views of
the same data, although individual users may only focus on a particular level to
perform their specific job. But, to emphasize this difference in perspective, we
have named these levels as floors of data. While data copying may continue
between the floors, this approach is no longer the only one possible.

The data on the different floors of the pyramid does have different
characteristics, such as volumes, structures, and access methods. Because of
that we can choose the best way to physically instantiate the data. And the
pyramid emphasizes that today the requirement is to access data from all floors
within a single activity or process.

78 Dimensional Modeling: In a Business Intelligence Environment

We now describe each floor in a bit more detail, along with the part it plays in the
reporting environment. From this discussion, we can see the advantages,
disadvantages, and how the decision-making processes should be architected.

Decision Making

N

Static
reports,
Dashboards

Dimensional, Data Mart, Strategic

Cubes. Duration: Years

Floor 4

Summarized Data
Performance and Rolled-up Data.

Duration: Years
Floor 3

Near 3" Normal Form, Subject Area, 4
Code and Reference tables.

Duration: Years .
Floor 2 Tactical

Staging, detail, denormalized, Raw Source
Duration: 60, 120, 180, ... Days <
Floor 1

Operational
Operational Systems
Duration: 60, 120, 180, . .. Days

Floor 0

Figure 4-1 Information pyramid

The concept behind the information pyramid is to map the delivery of data needs
to your applications and organization needs. This is to help determine the data
flow and delivery requirements. We call this right time data delivery. The lower
floors of the architecture offer the freshest, and most detailed data. This is the
source of data for making operational decisions on a day to day basis. As you
move up the floors, the data becomes more summarized and focused for specific
types of analysis and applications. For example in floors 3, 4, and 5, the data is
used for more strategic analysis.

Now we take a look at each of the floors and discuss them in detail.

Floor 0

This floor represents data from the operational or source systems. The data in
the source systems is typically in SNF and represented in an E/R model. The
source systems are the applications that capture the transactions of the
business. The data is highly normalized so that the transactions performing

Chapter 4. Data analysis techniques 79

inserts, updates, and deletes can be executed quickly. The primary requirements
for these source systems are transactional performance and high availability.
The source systems are periodically purged, so they typically store relatively little
history data. With source systems, you can make operational, day to day
decisions, but they are not formatted or architected for long-term reporting
solutions.

The advantages of querying from the source systems (floor 0) are:

» No need for additional hardware.
» Quick start.
» Less difficult to accomplish.

The disadvantages of querying from the source systems (floor 0) are:

» They are not optimized for query processing.

» Executing queries or reports against a source system can negatively impact
performance of the operational transactions.

» Insufficient history data for general query and reporting.

» They need new data structures (such as summary tables) created and
maintained.

Note: Floors 1-5 can broadly be mapped to the layers in existing data
warehouse architectures. These layers are based on the same fundamental
data characteristics that provided the basis for separating the different types of
data when defining the architecture of the data warehouse.

Floor 1

This floor represents the staging area and the denormalized source systems.
The staging area is not appropriate for reporting because the data in the staging
area is prepared for consumption by the business users. On the other hand, a
denormalized source system, which is also often part of the floor 1, may be used
for limited reporting.

The advantages of querying from floor 1 are:
» Reporting can be obtained from the denormalized source systems.

The disadvantages of querying from floor 1 are:

» Data in the staging area cannot be used for reporting purposes because it
may not have been cleansed or transformed, and therefore, it is not ready to
be used.

80 Dimensional Modeling: In a Business Intelligence Environment

Floor 2

As shown in Figure 4-1 on page 79, floor 2 represents the 3NF data warehouse
and associated reference tables. In Figure 4-2, we show an architecture where

users are querying a data warehouse designed in a SNF E/R model. A
normalized database is typically difficult for business users to understand

because of the number of tables and the large number of relationships among

them.

Source System A

Source System B

e
xn_’ Load> »5“

User
Reports

Staging Area EDW

Source System C

n/'
X Normalized/De-normalized Normalized

ER Model ER Model

Figure 4-2 Querying a data warehouse

The advantages of querying from floor 2 are:

» There are single sources of data.

» Floor 2 contains history and detail data.

» Floor 2 is optimized for storage of large volumes of data.

The disadvantages of querying from floor 2 (the data warehouse) are :

» There is no structure for dimensional analysis, making it difficult to
understand the data relationships.

» Complex project, difficult to deliver.

Floor 3

Floor 3 represents summarized data, which is created directly from the
warehouse.

The advantages of querying from the summarized warehouse are:

» The history data is easily available.
» It is optimized for a set of data.

The disadvantages of querying from the data warehouse are:

Chapter 4. Data analysis techniques

81

» You may need to create summaries for several business processes, and
maintaining such summaries becomes a maintenance issue.

Floor 4
On floor 4, there are dimensional data marts stored in relational databases, and

data cubes.

The advantages of querying from the dimensional data mart or cubes are:

» History data is easily available.

» Highly optimized data is available for each business process.

» Queries are easy to understand by the business users.

The disadvantages of querying from the dimensional data mart or cubes are:

» You may need to create and maintain several dimensional models for each
business process. This adds to the overall cost of the data warehouse.

» For querying cubes, you may need to purchase specialized software.
» For creating and storing cubes, you need additional software.

» There will be additional storage requirements.

» The additional effort to populate data marts.

Source System A

Staging Area EDW Dimensional
Model

\A Load o
- o

Source System B

O Load #

X -
L]

Source System C 4’5‘

n/' User
X

Reports
Normalized/De-normalized Normalized
ER Model ER Model

Figure 4-3 Querying from a dimensional model

Floor 5

Floor 5 represents the reporting environment and infrastructure that is used for
making static reports, dynamic ad hoc reports, and dashboards. It is the delivery
platform that supports all the reporting needs.

82 Dimensional Modeling: In a Business Intelligence Environment

4.2 Bl reporting tool architectures
The different data analysis tools for reporting typically fall into two main
architectures as shown in Figure 4-4. The architectures are:

» 2-tier: In this architecture, the Bl reporting tool is installed on the client
machines and these tools (clients) directly access the data warehouse or the
data marts.

» 3-tier: In this architecture, the Bl reporting server software is installed on a
server machine. All the clients access the data warehouse or the data marts
by using a browser. No special tool must be installed on the clients.

2-tier Clients =
d Bl Tool
Di Installed

Clients
7] e
o I Browser
Di GUI

Bl Tools Servers
and Bl Repository

Figure 4-4 Bl reporting tool architectures

4.3 Types of Bl users

When buying BI reporting tools, it is important to match them with the type of
user who uses them. Each product tends to excel at certain tasks, but may lag in
others. This typically means that the client ends up with 3-4 Bl tools to meet the
requirements. Then there is a need for additional skills, education, maintenance,
and licenses, which are all additional expenses. Soon there is a movement to
consolidate those tools to save money. In this case, you must take care to make
sure the business users still have the specific capabilities they need to do their
jobs. Figure 4-5 on page 84 shows classifications of users according to their Bl
reporting needs.

Chapter 4. Data analysis techniques 83

Analytic Complexity
SDKs, open standards, data mining,
b high IT performance, data sources

What will happen?

Power Intera<':t|ve qu'erles, OL{\P.,
analytic functions, statistics,
Users simulations

Why did it happen? i
Static reports, report

Business Users distribution, scorecards,
XL, dashboards

What
happened? c U Static reports, ease of
asua sers use, portlets

low

portlets, extranet
Enterprise Users, Consumers, Partners access to company
Web sites
< Population size >

Figure 4-5 Bl user types and their requirements

Based on the analytical needs, we classify the Bl users within an organization as
follows:

>

Enterprise users, consumers, and partners: These users have the lowest
reporting needs. These users typically access data in the form of portlets or
company Web sites which have been given extranet access.

Casual users: Casual users mainly use static reports and portlets. They
require ease of use, and typically prefer to work with standalone applications,
such as spreadsheets.

Business users: Now we are getting to users who typically belong to middle
and executive management. They are more interested in dashboards and
other static types of reports. Business users are involved with both tactical
and strategic decision making processes.

Power users: These users require higher functionality compared with other
user types. They understand the environment, are familiar with the data
analysis tools, and are comfortable with complex applications.

IT users: IT users are responsible for creating the reports for the business. IT
users work with advanced reporting applications, such as software
development kits (SDK) and data mining software. They understand the IT
environment and are comfortable interacting directly with several
heterogeneous data sources.

84 Dimensional Modeling: In a Business Intelligence Environment

4.4 Query and reporting

Query analysis and reporting are the processes for posing questions to answer,
retrieving relevant data from the data warehouse, transforming it into the
appropriate context, and displaying it in a readable format. Query analysis and
reporting are primarily driven by analysts who are quite familiar with posing such
queries to determine the answers to their questions.

Traditionally, queries have dealt with two dimensions, or two factors, at a time.
For example, you might ask, "How much of that product has been sold this
week?" Subsequent queries would then be posed to perhaps determine how
much of the product was sold by a particular store. Figure 4-6 depicts the
process flow in query and reporting.

Query definition is the process of taking a business question or hypothesis and
translating it into a query format that can be used by a particular decision support
tool. When the query is executed, the tool generates the appropriate language
commands to access and retrieve the requested data, which is returned in what
is typically called an answer set. The data analyst then performs the required
calculations and manipulations on the answer set to achieve the desired results.
Those results are then formatted to fit into a display or report template that has
been selected for ease of understanding by the user. This template could consist
of combinations of text, graphic images, video, and audio. Finally, the report is
delivered to the user on the desired output medium, which could be printed on
paper, visualized on a computer display device, or presented audibly.

Query
Definition

|1> Data Access
and Retrieval
|1:> Calculation
Manipulation

|1:> Report
Preparation
|1:> Report
Delivery

Figure 4-6 Process of querying and reporting

Users are primarily interested in processing numeric values, which they use to
analyze the behavior of business processes, such as sales revenue and
shipment quantities. They may also calculate, or investigate, quality measures

Chapter 4. Data analysis techniques 85

such as customer satisfaction rates, delays in the business processes, and late
or wrong shipments. They might also analyze the effects of business
transactions or events, analyze trends, or extrapolate their predictions for the
future. Often the data displayed will cause the user to formulate another query to
clarify the answer set or gather more detailed information. This process
continues until the desired results are reached.

A more detailed discussion on different types of reporting and querying tools in
available in 4.6, “Query and reporting tools” on page 94.

4.5 Multidimensional analysis techniques

Multidimensional analysis has become a popular way to extend the capabilities
of query and reporting. That is, rather than submitting multiple queries, data is
structured to enable fast and easy access to answers to the questions that users
typically ask. For example, the data would be structured to include answers to
the question, "How much of each of our products was sold on a particular day, by
a particular salesperson, in a particular store?" Each separate part of that query
is called a dimension. By precalculating answers to each subquery within the
larger context, many answers can be readily available because the results have
been precalculated for each query; they are simply accessed and displayed. For
example, by having the results to the above query, one would automatically have
the answer to any of the subqueries. That is, we would already know the answer
to the subquery, "How much of a particular product was sold by a particular
salesperson?" Having the data categorized by these different factors, or
dimensions, makes it easier to understand, particularly by business-oriented
users of the data. Dimensions can have individual entities, or a hierarchy of
entities, such as region, store, and department.

Multidimensional analysis enables users to look at a large number of
interdependent factors involved in a business problem and to view the data in
complex relationships. Users are interested in exploring the data at different
levels of detail, which is determined dynamically. The complex relationships can
be analyzed through an iterative process that includes drilling down to lower
levels of detail or rolling up to higher levels of summarization and aggregation.

Figure 4-7 on page 87 demonstrates that the user can start by viewing the total
sales for the organization, then drill-down to view the sales by continent, region,
country, and finally by customer. Or, the user could start at customer and roll-up
through the different levels to finally reach total sales. Pivoting in the data can
also be used. This is a data analysis operation where the user takes a different
viewpoint than is typical on the results of the analysis, changing the way the
dimensions are arranged in the result. Like query and reporting, multidimensional
analysis continues until no more drilling down or rolling up is performed.

86 Dimensional Modeling: In a Business Intelligence Environment

Sales A

Europe Asia oI

Drill Roll
Down Region Region Up

Country}— Country— Country

Y Customer Customer

Figure 4-7 Drill-down and roll-up analysis

Multidimensional analysis enables you to look at the business problem by large
number of interdependent factors describing the matter. In other words,
multidimensional analysis enables you to view the information at different levels
of detail or to analyze complex relationships.

The following are multidimensional techniques that we discuss in more detail:

» Slice and dice

» Pivoting

» Drill-down, drill-up, and drill-across
» Roll-down and roll-up

4.5.1 Slice and dice

We start by discussing slice and dice analysis as individual activities.

Slice

The term slice in multidimensional terminology is used to define a member or a
group of members that are separated (from ALL other dimensions) and then
evaluated across all the dimensions. A member of a dimension means a value
inside a column. Slicing is slightly difficult to understand on a two-dimensional
paper. In order to understand the slicing concept, consider a dimensional model
example. Assume that we have only three dimensions named product, store,
and date in a simple dimensional model. In this simple dimensional model, we
just have one fact table with a fact called sales.

Chapter 4. Data analysis techniques 87

88

Assume that we isolate three members from the product dimension. The three
members we isolated for the product dimension are soda, milk, and juice. This is
shown in Figure 4-8. If we measure the SUM of sales quantity for ALL stores and
for ALL dates across one or more members of one dimension (product in our
case), then this concept is called slicing. The arrow in Figure 4-8 shows that the
sum is across all dates and all stores.

This slice of the product dimension lets us to select our concerned members
(soda, milk, and juice) from the product dimension. The slicing of the members
allows us to focus only on these three members across all other dimensions.
This concept is called slicing.

mm)(For ALL Stores and Dates)

Product Sales in USD
Soda 2,530
Milk 3,858
Juice 15,396
Total 21,784

Figure 4-8 Slice for product

The slice in Figure 4-8 shows that soda generates the smallest sales amount,
milk second, and juice third.

Note: When you slice, you choose one or more members of a dimension and
consolidate (or summarize) across all other dimensions (in our example, the
other dimensions were store and date.)

Dice

The dicing concept means that you put multiple members from a dimension on
an axis and then put multiple members from a different dimension on another
axis. This allows you to view the interrelationship of members from different
dimensions.

Dicing is analysis of interrelationships among different dimensions or their
members. Figure 4-9 on page 89 and Figure 4-10 on page 89 show examples of
dicing.

In Figure 4-9 on page 89, we see multiple members listed vertically for the store
dimension in one axis. These members are CA, OR, and LA. Similarly, we have
multiple members for the date dimension which are listed horizontally. We are
able to view the interrelationship of members from different dimensions. In other

Dimensional Modeling: In a Business Intelligence Environment

words, we are able to see the relationship between CA and dates 1/1/2005,

1/2/2005, 1/3/2005, and vice versa.

=) DATE 1/1/2005 1/2/2005 1/3/2005 Total
Metiics St Swen S SOvsD
ISTDRE
CA 40 50 90 180
OR 3,115 3,340 1,267 7.722
LA 1,583 7,418 4,881 13,882
Total 4,738 10,808 6,238 21.784

Figure 4-9 Dice for store and date

Another example of dicing is shown in Figure 4-10.

=) PRODUCT Milk Coke Juice Total
B Metics Simmsde saeh SOUSD
STORE
CA 40 60 80 180
OR 60 1,452 6,210 7,722
LA 2430 2,346 9,106 13.882
Total 2,530 3,858 15.396 21.784

Figure 4-10 Dice of store and product dimension

In this example, we can see the interrelationship between the members of the

store and product dimensions. Here we analyze:

» How each store contributes to total sales amounts for each product (Soda,

Milk, and Juice).

» How a particular product contributes to total sales for each store location.

Note: You dice when you choose one or more members of same dimension
on one axis and on the other axis you choose a member or members from

another dimension. Now you can analyze interrelationships of those

dimensions.

Chapter 4. Data analysis techniques

89

4.5.2 Pivoting

Pivoting in multidimensional modeling means exchanging rows with columns
and vice versa. Figure 4-11 on page 90 shows an example of pivoting. We
exchange the store rows with columns of the product dimension members. It is
simply a quick way to view the same data from a different perspective.

PRODUCT Milk Coke Juice Total

Sales in Salesin Salesin Salésin

L USD __ USD usp USD
STORE
CA 40 60 80 180
OR 60 1,452 6,210 7,722
LA 2,430 2346 9,106 13,882
Total 2,530 3.858 15,396 21.784

'°/'[,Ol
STORE CA OR LA Total
Sal .
Metrics ' ?:: Salesin Salesin Salesin
usp usn UsD UsD
PRODUCT
Soda 40 60 2430 2530
Milk 60 1,452 2,346 3,858
Juice 80 6,210 9,106 15,396
Total 180 7,722 13.882 21,784

Figure 4-11 Pivoting

Note: You pivot when you exchange the axes of the report.

4.5.3 Drill-down and drill-up

Drilling in multidimensional terminology means going from one hierarchy level to
another. In other words, drill-down can be defined as the capability to browse
through information, following a hierarchical structure.

In the example shown in Figure 4-12 on page 91, we show drilling down through
a simple three level hierarchy present in the product dimension. The hierarchy is

Dimensional Modeling: In a Business Intelligence Environment

‘Group Class’ — ‘Group’ — ‘Product’. When we drill-down the Group Class
attribute, we reach the Group. Finally by drilling down on the Group attribute, we
reach the lowest detail present inside the product dimension (which is the
individual product) as shown in Figure 4-12 on page 91.

STORE CA OR LA Total

Sales)
Metrics in Salesin Salesin Salesin
uso usop usop uUsD

ass
Beverage) 180 7,722 13,882 21,784
\ 180 7.722 13,882 21,784

\ Beverage ->Group
STORE CA OR LA Total

Sales i
Metrics in Salesin Salesin Salesin

usp Usp usp usb
(Group

Pop—\ 140 7,662 11,452 19,254
Water 40 60 2430 2,530

Total 180 7,722 13,882 21,784

Beverage ->Group -> Pop

N

STORE CA OR LA Total
Metrics S“I?: Salesin Sales in Salesin
usp usp usp Usb

PRODUCT
Milk 60 1,452 2,346 3,858
Juice 80 6,210 9,106 15,396
Total 140 7.662 11,452 19,254

Figure 4-12 Dirill-down on product dimension

Note: We consider drilling up and drilling down when we want to analyze the
subject at different levels of detail. Drilling is possible if a dimension contains a
multiple level hierarchy.

Another example of drill-down is shown in Figure 4-13 on page 92. Here we drill
down from total sales in the US to sales at a particular store in Buffalo.

Chapter 4. Data analysis techniques 91

Sales in US.

I

| sales in South | | Sales in East |

[}
Sales in New
York

¥
[Sales in Buifalo|

'

Sales at ABC

Store

| Sales in West |

Figure 4-13 Dirill-down example

Drill-up is exactly the opposite of drill-down.

4.5.4 Drill-across

92

Drill-across is a method where you drill from one dimension to another. You must
define the drill-across path. This function is often used in ROLAP. In Figure 4-14,
you see the result of drill-across from store CA to the product dimension. The first
chart depicts the sales in stores in three different states. And, in particular, we

have focused on CA (California).

DATE 1/1/2005 1/2/2005 1/3/2005

Total

Sales in

Sales in Salesin Sales in

Metrics usD usD uson uUsD
ORE
CA 40 50 90 180
3115 3,340 1,267 7,722
LA 1583 7418 4,881 13,882
Total 4,738 10,808 6.238 21,784
\ CA=PProduct
DATE 1/1/2005 1/2/2005 1/3/2005 Total
Sales
Metrics Salesin Sales in Sales in in
uso usp usp USD
PRODUCT
Soda 10 10 20 40
Milk 20 10 30 60
Juice 10 30 40 80
Total 40 50 90 180

Figure 4-14 Dirill-across result

Dimensional Modeling: In a Business Intelligence Environment

By drilling across to the product dimension, we can see the details about which

products comprised the sales for the store CA.

4.5.5 Roll-down and Roll-up

Roll-down and roll-up are OLAP functions that give the higher or lower aggregate

over whole dimension at a given hierarchy level.

In the example in Figure 4-15, we roll-down the product dimension from level 3,
to level 2, and to level 1. This is done through the product hierarchy level: “Group

class” — “Group” — “Product”.

The roll-down concept is the same as a drill-down.

S,

DATE 1/1/2005 1/2/2005 1/3/2005 Total

i Sales in Sales in Sales in Sales in
Metrics usD usp usp ushD

Group Class Group PRODUCT

Beverage 4738 10,808 6,238 21,784
Total 4,738 10.808 6.238 21.784
@ DATE 1/1/2005 1/2/2005 1/3/2005 Total
: alesin Salesin ales in Sales i
Metrics SIII)SD * IlISD * IEJS[! af;s‘;
Group Class Group PRODUCT
Beverage
Pop 3721 9,880 5,653 19,254
\Water 1,017 928 585 2,530
Total 4,738 10,808 6.238 21.784
Total 4,738 10.808 6.238 21.784
DATE 1/1/2005 1/2/2005 1/3/2005 Total
Metrics Sales in Sales in Salesin Salesin
uso uso usn USD
A Group Class Group PRODUCT
Beverage
S a Pop
o) Milk 1,141 1,431 1,286 3.858
a = Juice 2580 8449 4,367 15,396
= &) Total 3721 9,880 5.653 19.254
é) Water
Soda 1,017 928 585 2,530
Total 1,017 928 585 2.530
V Total 4,738 10,808 6,238 21,784
Total 4,738 10,808 6,238 21.784
Figure 4-15 Roll-down, Roll-up

Roll-up is exactly opposite to roll-down. The arrows in Figure 4-15 show the roll

directions. The roll-up concept is the same as drill-up.

Chapter 4. Data analysis techniques

93

4.6 Query and reporting tools

In this section, we discuss various query and reporting tools you can use to
generate reports. We categorize various tools that can help in creating reports as
follows:

SQL query language using select statement, views, or stored procedures
Spreadsheets

Reporting Applications (Client-Server and Web-based)

Dashboard and scorecard applications

Data Mining tools

vyvyVvyyvyy

4.6.1 SQL query language

Select

In the RDBMS environment, the basic query reporting language is the structured
query language (SQL) which enables you to query data in a database. In
Example 4-1, we show an SQL select returning daily sales values for Product
with subtotals and totals grouped by Date, Product Group, and Products.

Example 4-1 SQL select

select D.DAY_AD as DAY,P.SUB_PRODUCT_GROUP as GROUP,P.PRODUCTS,
sum(S.VALUE) Sale_Amount
from SALE S
join PRODUCT P
on (S.P_ID = P.P_ID)
join DATE D
on (S.D_ID = D.D_ID)
where P.SUB_PRODUCT_GROUP in ('Pop')
group by rollup(D.DAY_AD,P.SUB_PRODUCT_GROUP,P.PRODUCTS)
order by 1,2,3,4;

The output of the Select statement is shown in Example 4-2.

Example 4-2 Output of select

DAY GROUP PRODUCTS SALE_AMOUNT
2005-01-01 Pop MiTk 1141
2005-01-01 Pop Juice 2580
2005-01-01 Pop - 3721
2005-01-01 - - 3721
2005-01-02 Pop Milk 1431
2005-01-02 Pop Juice 8449
2005-01-02 Pop - 9880
2005-01-02 - - 9880

94 Dimensional Modeling: In a Business Intelligence Environment

2005-01-03 Pop MiTk 1286

2005-01-03 Pop Juice 4367
2005-01-03 Pop - 5653
2005-01-03 - - 5653
- - - 19254

13 record(s) selected.

Views

When an SQL select is complex and used very often in users’ queries or by many
applications, consider embedding it in an SQL view, as shown in Example 4-3.

Example 4-3 SQL view

create view sales_by date_Pop as (
select D.DAY_AD as DAY,P.SUB_PRODUCT_GROUP as GROUP,P.PRODUCTS,
sum(S.VALUE) as Sale_Amount

from SALE S
join PRODUCT P

on (S.P_ID = P.P_ID)
join DATE D

on (S.D_ID = D.D_ID)
where P.SUB_PRODUCT_GROUP in ('Pop')
group by rollup(D.DAY_AD,P.SUB_PRODUCT_GROUP,P.PRODUCTS)
)

Basically the views are helpful in hiding the complexity of the SQL statement.
The user only needs to select the output from the view (select * from
sales_by_date_pop) instead of writing the long SQL statement, such as the one
in Example 4-3.

RDBMS stored procedures

Stored procedures are programs that use data from RDBMS and can be
executed from the RDMS environment. There are generally two types of RDBMS
procedures, PL SQL-based and External (written in a higher programing
language, such as C, Cobol, or BASIC). In Example 4-4, we show a sample DB2
PL SQL-stored procedure using an SQL select code with parameter “Group”. In
Example 4-4, we use the create procedure command and pass the procedure
with an input parameter specifying a product group. The procedure returns sales
amount for all dates for the specific product group defined by parameter. The
syntax of command is: call sales_by date('Pop').

Example 4-4 Stored procedure

CREATE PROCEDURE sales_by date (IN i_GROUP char(35))
RESULT SETS 1
LANGUAGE SQL

Chapter 4. Data analysis techniques 95

SPECIFIC SELECT_LIST
READS SQL DATA
DETERMINISTIC
BEGIN
DECLARE c1 CURSOR WITH RETURN FOR
select D.DAY_AD as DAY, P.SUB_PRODUCT_GROUP as GROUP, P.PRODUCTS, sum(S.VALUE)
as Sale_Amount
from SALE S
join PRODUCT P on (S.P_ID = P.P_ID)
join DATE D on (S.D_ID = D.D_ID)
where P.SUB_PRODUCT_GROUP in (i_GROUP)
group by rollup(D.DAY_AD, P.SUB_PRODUCT_GROUP,P.PRODUCTS) order by 1,2,3,4;
open cl;
END@

And the result we get is shown in Example 4-5.

Example 4-5 PL SQL stored procedure output for parameter “Pop”

Result set 1

DAY GROUP PRODUCTS SALE_AMOUNT
2005-01-01 Pop MiTlk 1141
2005-01-01 Pop Juice 2580
2005-01-01 Pop - 3721
2005-01-01 - - 3721
2005-01-02 Pop MiTk 1431
2005-01-02 Pop Juice 8449
2005-01-02 Pop - 9880
2005-01-02 - - 9880
2005-01-03 Pop Milk 1286
2005-01-03 Pop Juice 4367
2005-01-03 Pop - 5653
2005-01-03 - - 5653
- - - 19254

13 record(s) selected.
Return Status = 0

A different SQL command call sales_by_date('Water') gives us a different
result set for Product group Water as shown in Example 4-6.

Example 4-6 PL SQL stored procedure output for parameter Water

Result set 1

DAY GROUP PRODUCTS ~ SALE_AMOUNT

96 Dimensional Modeling: In a Business Intelligence Environment

2005-01-01
2005-01-01
2005-01-01
2005-01-02
2005-01-02
2005-01-02
2005-01-03
2005-01-03
2005-01-03

Water
Water

Water
Water

Water
Water

10 record(s) selected.

Return Status =

1017
1017
1017
928
928
928
585
585
585
2530

Note: Views and stored procedures are also used in the query and reporting

environment to control data access for tables and their rows.

4.6.2 Spreadsheets

One of the most widely used tools for analysis is the spreadsheet. It is a very

flexible and powerful tool; and therefore, you can find it in almost every

enterprise around the world. This is a good-news and bad-news situation. It is

good, because it empowers users to be more self-sufficient. It is bad, because it

can result in a multitude of independent (non-integrated and non-shared) data
sources that exist in any enterprise.

Here are a few examples of spreadsheet use:

» Finance reports, such as a price list or inventory

» Analytic and mathematical functions

» Statistical process control, which is often used in manufacturing to monitor
and control quality

4.6.3 Reporting applications

There are many analytical query and reporting applications in the market which
work with different relational databases or with special multidimensional
structures, such as cubes. These applications include:

» IBM Alfablox
» DB2 OLAP Server™
» Microstrategy

Chapter 4. Data analysis techniques

97

Hyperion Essbase
Brio
BusinessObjects
Cognos Impromptu
Crystal Reports

vyvyyvyyvyy

In Table 4-1, we list important criteria for you to consider when you are selecting
reporting applications for your company.

Table 4-1 Selection criteria for reporting applications

Report authoring and
formatting

Drag and drop creation, multiple sources, mixed tables,
graphs, tabular formats, style sheets, WYSIWYG, print
control, sorting, invoices, and labels

Report distribution

Time or event scheduled; table of contents navigation;
formats, such as PDF, HTML, and Excel®; alerts

Analytical functions

Running totals, percent of total, Euro conversion, ranking,
highlight exceptions, mining, and binning

Query interaction

Ease of use, shield user from SQL and database
navigation complexity, and modify and reuse existing
queries

OLAP functionality

Hierarchical summaries, drill-down, drill-up, and view
pivoting

SDKs and APIs Data sources, language libraries, embedded reporting,
MDX support, and performance

Security Report element security

Aggregates Aggregate awareness

4.6.4 Dashboard and scorecard applications

The most common mechanisms for viewing performance data are dashboards
and scorecards. Top and middle management are not the target users for
analytical tools. Their requirements are for viewing performance data at high
levels. Dashboards provide the management with a high level view of the data.

A dashboard provides a graphical user interface that can be personalized to suit
the needs of the user. A dashboard graphically displays scorecards that show
performance measurements, together with a comparison of these measurements
against business goals and objectives.

Note: Top executives are the target users for dashboard applications.

98 Dimensional Modeling: In a Business Intelligence Environment

In Figure 4-16 we show a business process management (BPM) dashboard
example from the insurance industry. It is not critical to read the values on the
dashboard, but to understand the concept. It gives management critical data on a
number of strategic elements that require special focus and monitoring. For
example, it shows new business growth by category. Management can monitor
these elements to make sure they are in line with the business goals and
strategy. If not, management can take immediate action.

The dashboard also gives a current status on a number of projects with
appropriate alerts.

3 1BM Workplace Services Express - Microsoft Internet Explorer

Fle Edit View Favortes Took Help

Welcome CEO Insurance! My Workplace Templates

G ST Sales Dashboard Staffing Dashboard Scorecard
[Z-Eurostacks fall on HSBC, ol 2-GAD: Firms avoided 33,48 in taxes Z-LVMH creates naw 1,5, unit 2-MC1 may talk to Qwest to review options
pusiness News |
personal Broker M0, 105 01 AL a2 4012 0t 20 HIG 02 -0
MNew Business Growth ? - 0O Financial Overview Snapshot ? - 0O Project Watch -0
1055 , Sarbanes Oxley
0.24% I £t
s Pure Loss Retio 18 | Capital P Finance ation
1BIT 2005 Budget Planning Busil Perfi M -+)
Combined Loss Ratio I
0.1) | 2005 Road Map
01 50.78% Closing Rate T}
8.00% New Business Growih -
< Claim Process Cost Reduction (+]
MNew Product Line
1852 Mew Finance Sector —f L1
Loss Dev. Revenues —|
]
Policy Manager - O cCustomer Info o
Poficys [AUTOPOLIO0D = Ssearch: [&l Preducars B 0
. Top 3 Producers
_[_SI_S‘L B Delete | Premium Insurance Agency
| Insurance Associates
National Insurance Agency
Floyds Agency
Uberty Agents, Inc.
Instant Contacts =
Adtions ¥

Figure 4-16 Insurance dashboard
In Figure 4-17 on page 100, we show an example retail dashboard. It shows a list

of the key business areas and the appropriate alert status for each area. There is
also a summary of the current business financial status (shown in the inset). With

Chapter 4. Data analysis techniques 99

»

N .

this type of information, management now has the capability to not just monitor,
but also to impact the measurements.

M, Business Performance Management Workplace
Business Performance Management D Watson

0 wwhite Pages & Help Now
-
Personal Broker e | > - % Regional Sales Trends
Symbol - Trend Current Yesterday
| |zsates |
Invent st ¢ |
nventory ore O | |mmargin]
reTco A 110.5 93.7 In Transit (]
BEQ [43.2 441 e (4]
sENT [331 5.2 On Order (1] ol ey
1t Gir 2nd Gir 3rd Qir 4th Qrr
Production In Bound n/a
HIPT et 22.2 22.1
cut n/a R E
Last Update 12:00 ~
Refresh e Replenishment Forecast (4] SaFnaHeS ORIy e
BTSiNEERGSERTEher Schedule (4] Pre Seasan Plan Completion
Retail Headlines Sales Forecast [+] July 4th Promotion (4]
¥ahoo Finance Retail
Delta Travel Budget Forecast
Retail Perpectives it © g Lt
retalindustry.about, com Pl C e /3 New Stare layout
Wwall Street Joumal - Retail Sales Lift Prejection n/a s epiadh o il o
Uptumn predicted Past activity (4] packaging ’
wsj.cam et Plan-c-gram 0 Unallocated Promo fund [+]
Business Performance Management
1BM Floorset schedule (4] Currant Time
Analytics Related Ttem (4] Store Operations
WMarket (4] &% Merchandising contacts
Business Pulse
E— £1,088.7M Local Issuas Competitive Pricing (4] o Eric Wayne
Sales Comps for CIE £181,5M Weather (4]
. Lan Hughes
Region £3,520,2M
Departments
Qutdoar $272,2M Yendor information
work $335.7M Choose Type
Leisure $477.2M Materials v
Sales Build D/D vs Iy £83.9M
svg Transaction ws ly $2,987.9M Reports Available
Roll Projection to e
week !
Inventary Show all contacts v

Figure 4-17 Retail Dashboard

Note: The usage of dashboards to help in business performance

management is discussed in more detail in the IBM Redbook, Business
Performance Management...Meets Business Intelligence, SG24-6340.

4.6.5 Data mining applications

Data mining is a relatively new data analysis technique. It is very different from
query and reporting and multidimensional analysis in that it uses what is called a
discovery technique. That is, you do not ask a particular question of the data but
rather use specific algorithms that analyze the data and report what they have
discovered. Unlike query and reporting and multidimensional analysis where the
user has to create and execute queries based on hypotheses, data mining
searches for answers to questions that may have not been previously asked.
This discovery could take the form of finding significance in relationships
between certain data elements, a clustering together of specific data elements,

100 Dimensional Modeling: In a Business Intelligence Environment

or other patterns in the usage of specific sets of data elements. After finding
these patterns, the algorithms can infer rules. These rules can then be used to
generate a model that can predict a desired behavior, identify relationships
among the data, discover patterns, and group clusters of records with similar
attributes.

Data mining is most typically used for statistical data analysis and knowledge
discovery. Statistical data analysis detects unusual patterns in data and applies
statistical and mathematical modeling techniques to explain the patterns. The
models are then used to forecast and predict. Types of statistical data analysis
techniques include:

v

Linear and nonlinear analysis
» Regression analysis

» Multi-variant analysis

» Time series analysis

Knowledge discovery extracts implicit, previously unknown information from the
data. This often results in uncovering unknown business facts.

Data mining is data driven (see Figure 4-18). There is a high level of complexity
in stored data and data interrelationships in the data warehouse that are difficult
to discover without data mining. Data mining provides new insights into the
business that may not be discovered with query and reporting or
multidimensional analysis alone. Data mining can help discover new insights
about the business by giving us answers to questions we might never have
thought to ask.

Analyst Analyst Data

Driven Assisted Driven

Q::;y Multidimensional Data
Reporting Analysis Mining

Figure 4-18 Data Mining focuses on analyzing the data content rather than responding to
questions

Some data mining tools available in the market are:

» The IBM product for data mining is DB2 Intelligent Miner™, which includes IM
Modeling, IM Scoring, and IM Visualization.

Chapter 4. Data analysis techniques 101

» SAS Institute’s Enterprise Miner.

» Microsoft Analysis Services.

» Oracle Data mining (separately purchased option within Oracle 10g
Enterprise Edition).

102 Dimensional Modeling: In a Business Intelligence Environment

Dimensional Model Design
Life Cycle

In this chapter, we discuss the activities involved in building a dimensional
model. This can be a very tedious process because requirements are typically
difficult to define. Many times it is only after seeing a result that you can decide
that it does, or does not, satisfy a requirement. And, the requirements of an
organization change over time. What is valid one day may no longer be valid the
next. Regardless, the requirements identified at this point in the development
cycle are used to build the dimensional model.

But, where do you start? What do you do first? To help in that decision process,
we have developed a dimensional model design life cycle (DMDL) which consists
of the following phases:

Identify business process requirements
Identify the grain

Identify the dimensions

Identify the facts

Verify the model

Physical design considerations

Meta data management

vVVvyYVvYyVvYyYvYYyvYyYy

The following sections discuss and describe these phases of the DMDL.

© Copyright IBM Corp. 2006. All rights reserved. 103

5.1 The structure and phases

The DMDL can help identify the phases and activities that you need to consider
in the design of a dimensional model. It is depicted in Figure 5-1. We have used
this methodology throughout the book as we work with dimensional models.

More specifically, we have used it to help in the example case study documented

in Chapter 7, “Case Study: Dimensional model development” on page 333.

Identify Model Components

Requirements Grain Dimensions Facts
Document/Study Identify Fact Table D;ﬁ:emnlsr;sné” | Identify Facts |
Enterprise Business Granularity
Processes
Identify Degenerate and X =
K ’ ! Conformed Dimensions Identify Conformed 2 o
Select Business Identify Multiple Facts c =
Process to Model 'g Separate Grains Identify Dimensional g 2 g
— o for a Single - Attributes (Granularity) - [g o
|dem|f¥.H|gh level o Business Process g- and Attribute Hierarchies Id_e_ntlfy Fac_t type_s_ = =2
Entities and g) @ (Addmve,'Sleml Ad‘,j't"ée' s ° <cn
Measures for = ['4 Identify Date and Time Non-Additive, Derived, &) o =
Conformance 2 Identify the Fact S Granularity Textual, Pseudo, or ,_ 2 c
® Table Types = Fact-less Facts) and) c®
Identify Data 9_ d (Transaction, £ nd Identify Slowly Changing Default Aggregate Rules g L:’ 2
Sources g Periodic, and a Dimensions £|| @<
£ Accumulating) = = ‘® O
Select Requirements B s Identify Fast Changing | Year-to-date Facts | ‘;: 8 §
Gathering Approach g_ (O] Dimensions (=)} —_ @®
(Source Driven @ - 0 S a
or oz || Check Grain for =) | Event Fact Tables | 3 o .
) Atomicit Identify cases for a n o
User Driven) Y Snowflaking) E‘ £
— : || - | Composite Key Design | = o é
equirements Identify preliminar Dimensional Challenges Q
Gathering A4 y > é

Requirements

candidates for
dimensions and
facts from the grain

(Multi-valued, Garbage,
Heterogeneous, Hot
Swappable,
Roleplaying)

Fact Table
Sizing and Growth

Analysis

L <= = L = Iterate L = <= L _

Metadata Management

ﬂ

Figure 5-1 Dimensional Model Design Life Cycle

We now describe the phases of the DMDL so you will be familiar with it and
better enable its use as you design your next dimensional model:

» Identify business process requirements: Involves selection of the business
process for which the dimensional model will be designed. Based on the
selection, the requirements for the business process are gathered. Selecting
a single business process, out of all those that exist in a company, often
requires prioritizing the business processes according to criteria, such as
business process significance, quality of data in the source systems, and the
feasibility and complexity of the business processes.

104 Dimensional Modeling: In a Business Intelligence Environment

» Identify the grain: Next, we must identify the grain definition for the business
process. If more than one grain definition exists for a single business process,
then we must design separate fact tables. Avoid forcefully fitting multiple grain
definitions into the same fact table. We also need to make sure that we design
the grain at the most atomic level of detail so that we can extend the
dimensional model to meet future business requirements. In other words, we
are able to add new facts and dimensions to the existing model with little or no
change to the front-end applications, or any major rework to the existing
model.

» Identify the dimensions: Here we identify the dimensions that are valid for
the grain chosen in the previous step.

» Identify the facts: Now we identify the facts that are valid for the grain
definition we chose.

» Verify model: Before continuing, we must verify that the dimensional model
can meet the business requirements. Sometimes it may be required to revisit,
and perhaps change, the definition of the grain to assure we can meet the
requirements.

» Physical design considerations: Now that the model has been designed,
we can focus on other considerations, such as performance. It may require
tuning by taking actions such as data placement, partitioning, indexing,
partitioning, and creating aggregates.

We describe the DMDL by using a retail sales business process. However, there
may be concepts of the DMDL that are not applicable to the retail sales business
process. For completeness, we cover those concepts in Chapter 6, “Modeling
considerations” on page 209.

5.2 Identify business process requirements

During this phase, we identify the business process for which the dimensional
model will be designed. However, be aware that a business process may require
more than one dimensional model.

In dimensional modeling, the best unit of analysis is the business process in
which the organization has the most interest. A business process is basically a
set of related activities. Business processes are roughly classified by the topics
of interest to the business. To extract a candidate list of high potential business
processes necessitates prioritization of requirements. Examples of business
processes are customers, profit, sales, organizations, and products.

To help in determining the business processes, use a technique that has been
successful for many organizations. Namely, the 5W-1H rule. First determine the

Chapter 5. Dimensional Model Design Life Cycle 105

106

when, where, who, what, why, and how of your business interests. For example,
to answer the who question, your business interests may be in customer,
employee, manager, supplier, business partner, and/or competitor.

Note: When we refer to a business process, we are not simply referring to a
business department. For example, consider a scenario where the sales and
marketing department access the orders data. We build a single dimensional
model to handle orders data rather than building separate dimensional models
for the sales and marketing departments. Creating dimensional models based
on departments would no doubt result in duplicate data. This duplication, or
data redundancy, can result in many data quality and data consistency issues.

Before beginning, recall the various architectures used for data warehouse
design we discussed in 3.3, “Data warehouse architecture choices” on page 57.
They were:

» Business-wide enterprise data warehouse
» Independent data warehouse
» Dependent data warehouse

Create a dimensional model for a business process directly from OLTP source
systems, as in the case of independent and dependent data warehouse design
architectures. Or create a dimensional model for a business process from the
enterprise data warehouse, as in the case of the business-wide enterprise data
warehouse architecture.

Figure 5-2 on page 107 shows that the source for a dimensional model can be:

» An enterprise wide data warehouse

» OLTP source systems (in the case of independent or dependent data mart
architectures)

» Independent data marts (in this situation, you might be interested in
consolidating the independent data marts into another data mart or data
warehouse)

Note: For more information on data mart consolidation, refer to the IBM
Redbook, Data Mart Consolidation: Getting Control of Your Enterprise
Information, SG24-6653.

Dimensional Modeling: In a Business Intelligence Environment

EDW

Dimensional
Model
OLTP Source Systems
o 0
>:<
o 0O

Independent Data Marts

X
X

Figure 5-2 Dimensional model sources

Data Mart
Consolidation

Data warehouse and the dimensional model

When you consider the partitioning of the data in a data warehouse, the most
common criterion is subject area. As you may remember, a data warehouse is
subject-oriented. It is oriented to specific selected subject areas in the
organization, such as customer and product. For a practical implementation of a
data warehouse, we suggest that the unit of measure is the business
process.This is quite different from partitioning in the operational environment.

OLTP systems and the dimensional model

In the operational environment, partitioning is more typically by application or
function because the operational environment has been built around
transaction-oriented applications that perform a specific set of functions. And,
typically, the objective is to perform those functions as quickly as possible. If
there are queries performed in the operational environment, they are more
tactical in nature and are to answer questions concerned with that instant in time.
An example is, “Has the check from Mr. Smith been processed?” Queries in the
data warehouse environment are more strategic in nature and intend to ask
questions concerned with a larger scope. An example of a query is, “What
products are selling well?” or “Where are my weakest sales offices?” To answer
those queries, the data warehouse is structured and oriented to subject areas
such as product or organization. These subject areas are the most common unit
of logical partitioning in the data warehouse.

Chapter 5. Dimensional Model Design Life Cycle 107

Figure 5-3 depicts an E/R model (which can be an OLTP or an enterprise data
warehouse) that consists of several business processes.

Business
Process #1 —

Business
Process #3 Process #2

Business

Figure 5-3 E/R model consists of several business processes

5.2.1 Create and Study the enterprise business process list

During this activity, we create a complete enterprise-wide business process list.
A sample business process list is shown in Table 5-1 on page 109, along with a
number of other assessment factors, such as:

\{

Complexity of the source systems of each business process
Data availability of these systems

Data quality of these systems

Strategic business significance of each business process

vvyy

Table 5-1 on page 109 also shows the value points along with the assessment
factors involved. For example, for the business process Finance, the Complexity
= High(1). The 1 here is the assigned value point. The value points for each
assessment factor are listed in detail in Table 5-2 on page 109.

108 Dimensional Modeling: In a Business Intelligence Environment

Table 5-1 Enterprise business process list

Name of business | Complexity | Data Data quality | Strategic
process availability business
significance
Retail sales Low (3) High (3) High (3) High (6)
Finance High (1) High (3) Medium (2) Medium (4)
Servicing Low (3) High (3) Medium (2) High (6)
Marketing Medium (2) Medium (2) Medium (2) Medium (4)
Shipment Low (3) Low (1) High (3) Low (2)
Supply Medium (2) Low (1) Medium (2) Low (2)
management
Purchase orders High (1) Medium (1) Low (1) Medium (4)
Labor Low (3) Low (1) Low (1) High (2)

Table 5-2 shows the value points for each of the assessment factors:

v

Complexity
Data availability
Data quality

vYyy

Table 5-2 Value points table for assessment factors

Strategic business significance

Assessment Factor Low Medium High

Complexity 3 2 1
Data availability 1 2 3
Data quality 1 2 3
Strategic business significance 2 4 6

Note: The value points, or weight, given for the assessment factor, Strategic
business significance, is more than the other factors. This is simply because
the company has decided that strategically significant business processes
should be given a higher value than the other assessment factors.

We recommend that you include the assessment factors you think are important
for your business processes and assign them with your evaluation of the

Chapter 5. Dimensional Model Design Life Cycle

109

appropriate points or weight. For example purposes, we have included only four
factors in Table 5-2 on page 109.

This exercise will help you quickly prioritize the business processes for which
dimensional models should be built.

5.2.2 Identify business process

In this phase, we prioritize the business processes. The basic idea here is to
identify the most and least feasible processes for building a dimensional model.

Table 5-3 shows a business process list in descending order of priority. The
priority is based on the number of points in the Point sum column. It is a
summary of all the assessment factor points. Table 5-3 is created from the
enterprise-wide business process list shown in Table 5-1 on page 109.

For example, when we look at the finance business, the point sum column has a

value of 10 (1 + 3 + 2 + 4), which is the sum of all assessment factor points.

Table 5-3 Enterprise-wide business process priority listing

Name of Complexity Data Data Strategic Point
business availability | quality business sum
process significance

Retail sales Low (3) High (3) High (3) High (6) 15
Finance High (1) High (3) Medium (2) | Medium (4) 10
Servicing Low (3) High (3) Medium (2) | High (6) 14
Marketing Medium (2) Medium (2) Medium (2) | Medium (4) 10
Shipment Low (3) Low (1) High (3) Low (2) 9
Supply Mgmt | Medium (2) Low (1) Medium (2) | Low (2) 7
Purchase High (1) Medium (1) | Low (1) Medium (4) 7
Order

Labor Low (3) Low (1) Low (1) High (2) 7

From Table 5-3, it is observed that the retail sales process gets the highest
priority. Therefore, it is also likely that this will be the business process for which

the first dimensional model (and data mart) will be built.

Therefore, it is the business process we have selected for the example case
study dimensional model in this chapter.

Dimensional Modeling: In a Business Intelligence Environment

Note: Table 5-3 serves only as a guideline for identifying high priority and
feasible business processes in our example. You will go through a similar
methodology in prioritizing the business processes in your company.

5.2.3 Identify high level entities and measures for conformance

The next step is to determine the high level business entities involved in each
process. We depict this in Table 5-4. The idea is to determine which entities are
common across several business processes. Once identified, we use these
entities as common across all dimensional models (data marts) in the enterprise.
Each business process will then be tied together through these common
(conformed) dimensions.

To create conformed dimensions that are used across the enterprise, the various
businesses must agree on the definitions for these common entities. For
example, as shown in Table 5-4, the business processes, Retail sales, Finance,
Servicing, Marketing, Shipment, Supply management, and Purchase order,
should agree on a common definition of the Product entity, because all these
business processes have the product entity in common. The product entity then
becomes a conformed Product dimension which is shared across all the
business processes.

However, getting agreement on definitions of common entities, such as product
and customer, can be difficult because they typically vary from one business
process to another. And, therefore, changes will likely impact existing

applications.
Table 5-4 Business processes and high level entities
High Level Entities —> >
<
o
£ 5
0 (U
- he] [o
1] e Q [72] - [
- -]]] b = 3 c =
S o [E |32 |5 |2 |2 |« & g
3 El2|s|le |o|2|o o |2 |5
° = 7] o |5 o | = b} o |2 o
. =4 [} 3 £ o @ > S | |8 | <
Business processes o » (O | | |a|od |2 |O |0 |w <
Retail sales X X X X X X
Finance X X
Servicing X X X X
Marketing X X X
Shipment X X X X X X X

Chapter 5. Dimensional Model Design Life Cycle 111

High Level Entities —

Selling date
Customer

Check

Store

Shipment company
And more

Business processes

X | Received date
Ledger

X< | Supplier

X | Warehouse

Supply management

X | X< | Product

Purchase order

X | X | X | Employee

Human resources

What are conformed dimensions?

A data warehouse must provide consistent information for queries requesting
similar information. One method to maintain consistency is to create dimension
tables that are shared (and therefore conformed), and used by all applications
and data marts (dimensional models) in the data warehouse. Candidates for
shared or conformed dimensions include customers, time, products, and
geographical dimensions, such as the store dimension.

What are conformed facts?

Fact conformation means that if two facts exist in two separate locations, then
they must have the same name and definition. As examples, revenue and profit
are each facts that must be conformed. By conforming a fact, then all business
processes agree on one common definition for the revenue and profit measures.
Then, revenue and profit, even when taken from separate fact tables, can be
mathematically combined.

Establishing conformity

Developing a set of shared, conformed dimensions is a significant challenge. Any
dimensions that are common across the business processes must represent the
dimension information in the same way. That is, it must be conformed. Each
business process will typically have its own schema that contains a fact table,
several conforming dimension tables, and dimension tables unique to the
specific business function. The same is true for facts.

5.2.4 Identify data sources

In this activity, we identify the data sources involved with the business

processes. Table 5-5 on page 113 shows a sample listing of business processes
and their respective data sources, along with their owner, location, and platform.
Other factors can also be associated to describe and document the data source

112 Dimensional Modeling: In a Business Intelligence Environment

in more detail. However, for simplicity of the example, we have chosen the name,
owner, location, and platform of the data source.

Table 5-5 Data sources for business process

Business Data Owner Location Platform
process sources

Retail sales Source 1 Order admin New Jersey DB2
Finance Source 2 Finance admin New York DB2
And more

5.2.5 Select requirements gathering approach

The traditional development cycle focuses on automating the process, making it
faster and more efficient. The dimensional model development cycle focuses on
facilitating the analysis that will change the process to make it more effective.
Efficiency measures how much effort is required to meet a goal. Effectiveness
measures how well a goal is being met against a set of expectations.

As previously mentioned, requirements are typically difficult to define. Often, it is
only after seeing a result that you can decide that it does, or does not, satisfy a
requirement. And, the requirements of an organization change over time. What is
valid one day may no longer be valid the next day. Regardless, we use the
requirements identified at this point in the development cycle to build the
dimensional model.

The question then is how can you build something that cannot be precisely
defined? And, how do you know when you have successfully identified the
requirements? Although there is no definitive test, we propose that if your
requirements address the following questions, then you probably have enough
information to begin modeling.

The questions relate to who, what, when, where and how

» Who are the people, groups, and organizations of interest?

» What functions need to be analyzed?

» Why is the data required?

» When does the data need to be recorded?

» Where, geographically and organizationally, do relevant processes occur?
» How do we measure the performance of the functions being analyzed?

» How is performance of the business process measured? What factors
determine the success or failure?

Chapter 5. Dimensional Model Design Life Cycle 113

» What is the method of information distribution? Is it a data report, paper,
pager, or e-mail (examples)?

» What types of information are lacking for analysis and decision making?
» What steps are currently taken to fulfill the information gap?

» What level of detail would enable data analysis?

There are likely many other methods for deriving business requirements.
However, in general, these methods can be placed in one of two categories:
» Source-driven

» User-driven

Figure 5-4 depicts an example of this methodology.

<— User Requirements —»
1

T What we want
User
Driven What can be

delivered and
will be useful

l

T

Source
Driven

What we have l
I

<+— Operational Data —»

Figure 5-4 Source-driven and User-driven requirements gathering

Source-driven requirements gathering

Source-driven requirements gathering, as the name implies, is a method based
on defining the requirements by using the source data in production operational
systems. This is done by analyzing an E/R model of source data if one is
available or the actual physical record layouts and selecting data elements
deemed to be of interest.

The major advantage of this approach is that you know from the beginning that
you can supply all the data, because you are already limiting yourself to what is
available. A second benefit is that you can minimize the time required by the
users in the early stages of the project. However, there is no substitute for the
importance and value you get when you get the users involved.

114 Dimensional Modeling: In a Business Intelligence Environment

Of course there are also disadvantages to this approach. By minimizing user
involvement, you increase the risk of producing an incorrect set of requirements.
Depending on the volume of source data you have, and the availability of E/R
models for it, this can also be a very time-consuming approach. Perhaps most
important, some of the user’s key requirements may need data that is currently
unavailable. Without the opportunity to identify these requirements, there is no
chance to investigate what is involved in obtaining external data. External data is
data that exists outside the enterprise. Even so, external data can often be of
significant value to the business users.

The result of the source-driven approach is to provide what you have. We think
there are at least two cases where this is appropriate. First, relative to
dimensional modeling, it can be used to develop a fairly comprehensive list of the
major dimensions of interest to the enterprise. If you ultimately plan to have an
enterprise-wide data warehouse, this could minimize the proliferation of duplicate
dimensions across separately developed data marts. Second, analyzing
relationships in the source data can identify areas on which to focus your data
warehouse development efforts.

User-driven requirements gathering

User-driven requirements gathering is a method based on defining the
requirements by investigating the functions the users perform. This is usually
done through a series of meetings and/or interviews with users.

The major advantage to this approach is that the focus is on providing what is
really needed, rather than what is available. In general, this approach has a
smaller scope than the source-driven approach. Therefore, it generally produces
a useful data warehouse or a data mart in a shorter time span.

On the negative side, expectations must be closely managed. The users must
clearly understand that it is possible that some of the data they need can simply
not be made available for a variety of possible reasons. But, try not to limit the
things for which the user asks. Outside-the-box thinking should be promoted
when defining requirements for a data warehouse. This prevents you from
eliminating requirements simply because you think they might not be possible. If
a user is too tightly focused, it is possible to miss useful data that is available in
the production systems.

We believe user-driven requirements gathering is the approach of choice,
especially when developing dependent data marts or populating data marts from
a business-wide enterprise warehouse.

Chapter 5. Dimensional Model Design Life Cycle 115

5.2.6 Requirements gathering

During requirements gathering, business users needs are collected and
documented. Requirements gathering focuses on the study of business
processes and information analysis activities with which users are involved. A
user typically needs to evaluate, or analyze, some aspect of the organization’s
business. It is extremely important that requirements gathering focus on the two
key elements of analysis that business users are involved with on a day-to-day
basis:

» What is being analyzed?
» The evaluation criteria

Requirements gathering, therefore, is extremely oriented toward understanding
the problem domain for which the modeling is done. Typically, requirements at
this stage are documented rather informally or, at least, they are not represented
in detailed schemas.

Assume that we are designing a dimensional model for a retail sales business
process. We identified the retail sales business process from section 5.2.2,
“Identify business process” on page 110. Figure 5-5 shows the E/R model for this

business process.

Department SUDD"E_'S
F | Emp_Department_ID ? gupp:!erll?r o [l et Supplier_Type
| upplier_Type_:
enpioyees | [R
_] Employe=D i | [Department Description] Supplier_Location_Maniager Sussher_DYeEcripﬁon
| Emp_Department_ID — [Department Head] Supplier_Region w -
— Manager_ID T Department_Start_Date
| |Lasthame — a E_Gw Brand
Firsthlame
—ITite Products B |Brand_ID
| TitleOfCourtesy — Store_BILLING Store_Billing_Details % | ProductlD ~ |_|Brand_Desaription
| Date of Birht] @ [BILL_NUMBER 7 |BILL_NUMBER bo——gs|| | Productiizme | |CategoryID
| |HireDate [" |Customer_ID ? | Productld | suppliero g
" |Employes_ID UnitPrice | categoryD
| store_Biling_Date Quantity || IProduct Code] Categories
o L r.o| |Store_Biling_Time EI;::UaL:Enount] | [Product vGA] | 2 |categoryID
|| store_Start_Date |__|[Product Cauntry] CategoryName
i Store_ID A Store_ID [Storage Cost Per Item] [Product Record] ™ Desarintion
| |Store_Code — [Cost Price Per Item] | [Product BNA] — Pictur:
| |Store_Name j [Labor Cost Per Item] " |BrandID =
| |store_Region_ID | more...] -
Store_Type ba = ‘IL Packaging
Customers % |Package_ID
3 | CustomerIo - Region |_|Package_Type
Customer_Type_ID ¢ | RegionID o Package_Description
Customer_RegionID :‘ Customer_Region_Descrif R
Store_Region Customer_Shapper_Il Territories
? | Store_Region_ID A Customer_Full_Name 7 | TerritoryID -~
Store_Region_Mame Customer_First_Mame Customer_Type :‘ Customer_Territory_Descripti
Store_County Customer_Last_MName | customer_Type_ID RegionlD o]
Store_State - Address E‘ Customer_Type
City Customer_Type_Descripti
Region il

Figure 5-5 E/R Model for the retail sales business process

116

Dimensional Modeling: In a Business Intelligence Environment

Now assume that we perform business requirements analysis for the retail sales
process. We identify that the business needs the answers to the questions
shown in Table 5-6.

Table 5-6 User requirements for the retail sales process

no.

Seq.

Business requirement

Importance

Q1

What is the average sales quantity this month for each
product in each category?

Medium

Q2

Who are the top 10 sales representatives and who are their
managers? What were their sales for the products they sold
in the first and last fiscal quarters?

High

Q3

Who are the bottom 20 sales representatives and who are
their managers?

High

Q4

How much of each product did U.S. and European customers
order, by quarter, in 2005?

High

Q5

What are the top five products sold last month by total
revenue? By quantity sold? By total cost? Who was the
supplier for each of those products?

High

Q6

Which products and brands have not sold in the last week?
The last month?

High

Q7

Which salespersons had no sales recorded last month for
each of the products in each of the top five revenue
generating countries?

High

Q8

What was the sales quantity of each of the top five selling
products on Christmas, Thanksgiving, Easter, Valentines
Day, and the Fourth of July?

Medium

Q9

What are the sales comparisons of all products sold on
weekdays compared to weekends? Also, what was the sales
comparison for all Saturdays and Sundays every month?

High

Q10

What are the 10 top and bottom selling products each day
and week? Also at what time of the day do these sell?
Assuming there are five broad time periods- Early morning
(2AM-6AM), Morning (6AM-12PM), Noon (12PM-4PM),
Evening (4PM-10PM), and Late night (10PM-2AM).

Time,
Product

The column named Importance (Low/Medium/High or Critical) signifies the
importance of the questions. Some questions (business needs) may be highly
significant for the business where other questions may be less significant in
comparison.

Chapter 5. Dimensional Model Design Life Cycle 117

In addition to the set of business requirements listed in Table 5-6 on page 117, it
is very important to understand how the business wants to preserve the history.
In other words, how does the business want to record the changed data. Some of
the questions (in regard to maintaining history) that you may ask are listed in

Table 5-7.
Table 5-7 Questions relating to maintaining history
Seq. | Question How to maintain history
no.
1 What happens if an employee changes Overwrite history or maintain
from Region A to Region B? history
2 What happens if an employee changes Overwrite history or maintain
from Manager A to Manager B? history
3 What happens if a product changes from Overwrite history or maintain
existing Category A to Category B? history
4 What happens when a product is Overwrite history or maintain
discontinued? history
5 More questions Overwrite history or maintain
history

5.2.7 Requirements analysis

During requirements analysis, informal requirements (as gathered in section
5.2.6, “Requirements gathering” on page 116) are further investigated and high
level measures and high level entities (potential future dimensions) are produced.

Table 5-8 shows high level entities and measures identified from the
requirements stated in Table 5-6 on page 117 for the retail sales business
process. Note that the high level entities are potential future dimensions.

Table 5-8 Requirement Analysis - High level entities and measures

Seq. | Business requirement High level entities | Measures

no.

Q1 What is the average sales quantity this Month, Product Quantity of
month for each product in each units sold
category?

Q2 Who are the top 10 sales representatives | Sales Revenue
and who are their managers? What were | representative, sales
their sales in the first and last fiscal Manager, Fiscal
quarters for the products they sold? Quarter, Product

118 Dimensional Modeling: In a Business Intelligence Environment

Seq. | Business requirement High level entities | Measures

no.

Q3 Who are the bottom 20 sales Sales Sales
representatives and who are their representative, Revenue
managers? Manager

Q4 How much of each product did U.S. and | Product, Quantity of
European customers order, by quarter,in | Customers, units sold
2005? Quarter, Year

Q5 What are the top five products sold last Product, Supplier Revenue
month by total revenue? By quantity sales,
sold? By total cost? Who was the Quantity of
supplier for each of those products? units sold,

Total Cost

Q6 Which products and brands have not Product, Brand, Sales
sold in the last week? The last month? Month Revenue

Q7 Which salespersons had no sales Salesperson, Sales
recorded last month for each of the Product, Customer | Revenue
products in each of the top five revenue | country, Month
generating countries?

Q8 What was the sales quantity of the top Holidays, Products | Sales
five selling products on Christmas, revenue
Thanksgiving, Easter, Valentines Day
and the Fourth of July?

Q9 What are the sales comparisons of all Products, Sales
products sold on weekdays comparedto | Weekdays, revenue
weekends? Also, what was the sales Weekends
comparison for all Saturdays and
Sundays every month?

Q10 | What are the 10 top and bottom selling Time, Product Sales
products each day and week? Also, at revenue
what time of the day do these sell?

Assuming there are five broad time
periods- Early morning (2AM-6AM),
Morning (6AM-12PM), Noon
(12PM-4PM), Evening (4PM-10PM) Late
night (10PM-2AM).

We listed each business requirement in Table 5-8 on page 118 and identified
some of the high-level entities and measures. Using this as a starting point, we
now filter down the entities and measures as shown in Table 5-9 on page 120.

Chapter 5. Dimensional Model Design Life Cycle

119

Also, any hierarchies associated with each of these high-level entities (which
could be transformed to dimensions later) are documented.

Table 5-9 Final set of high level entities and measures

Entities (potential future dimensions)

Hierarchy in entity (potential future
dimension)

Customer
(Customer country, such as U.S. or
Europe)

Country — Region

Product
(Brand, category)

Category — Brand

Selling Date
(Holidays, weekends, weekdays, month,
quarter, year)

Fiscal Year — Fiscal Quarter — Fiscal
Month

Supplier of product

Time of selling

Hour — Minute

Employee or salesperson or sales
representative

Measures
(Key Performance Indicators)

Revenue sales, Quantity of units sold,
Total cost

Note: The high level dimensions and measures are useful in determining the
grain, dimensions, and facts during the different phases of the DMDL.

5.2.8 Business process analysis summary

The final output of the Identify business process phase is the requirements
gathering report, which contains the following:

>
>

>

120

Business process listing

Business process prioritization

High level entities and measures, which are common between various

business processes

Business process identified for which the dimensional model will be built

Data sources listing

Requirement gathering which contains all business process requirements

Dimensional Modeling: In a Business Intelligence Environment

» Requirement gathering analysis
» High level entities and measures identified from the requirement analysis

5.3 Identify the grain

In the Identify the grain phase, we focus on the second step of the DMDL as
shown in Figure 5-6.

| Requirements

Identify Model Components

Select Business
Process to Model

p

Identify High level

Select Requirements
Gathering Approach
(Source Driven
Or
User Driven)

Requirement Gathering Repo
L 3

Requirements
Gathering

Requirements
Analysis

Identify Multiple
Separate Grains
for a Single
Business Process

Accumulating)

-

Grain Definition Report
¥

Identify Degenerate and
Conformed Dimensions

Grain Dimensions Facts
Determine All X
Document/Study Identify Fact Table Dim:enlsions | Identify Facts |
Enterprise Business Granularity
Processes

Identify Conformed
Facts

Identify Dimensional
Attributes (Granularity)
and Attribute Hierarchies

Identify Fact types

Entities and (Additive, Semi Additive,
Measures for Identify Date and Time Non-Additive, Derived,
Conformance Identify the Fact Granularity Textual, Pseudo, or

Table Types Fact-less Facts) and

Identify Data (Transaction, Identify Slowly Changing Default Aggregate Rules

Sources Periodic, and Dimensions

Identify Fast Changing
Dimensions

Year-to-date Facts

|| Check Grain for
Atomicity

Identify preliminary
candidates for
dimensions and

facts from the grain

Identify cases for
Snowflaking

Event Fact Tables

Dimensional Challenges
(Multi-valued, Garbage,
Heterogeneous, Hot
Swappable,
Roleplaying)

| Composite Key Design |

Physical Design Considerations

Verify Design with User Requirements
(Indexing, Partitioning and Aggregation)

Fact Table
Sizing and Growth

e = b =

Iterate L = = L

ﬂ

-

Metadata Management

Figure 5-6 Dimensional Model Design Life Cycle

What is the grain?
The following are several characteristics of grain identification:

» When identifying the grain, we must specify exactly what a fact table record
means. The grain conveys the level of detail associated with the fact table
measurements. Identifying the grain also means deciding on the level of detail
you want to be made available in the dimensional model. The more detail
there is, the lower the level of granularity. The less detail there is, the higher
the level of granularity.

Chapter 5. Dimensional Model Design Life Cycle 121

» The level of detail available in a star schema (dimensional model) is referred
to as the grain. Each fact and dimension table is said to have its own grain or
granularity. In other words, each table (either fact or dimension) will have
some level of detail associated with it. The grain of the dimensional model is
the finest level of detail implied by the joining of the fact and dimension tables.
For example, the granularity of a dimensional model consisting of
dimensions, date (year, quarter, month, and day), store (region, district, and
store) and product (category name, brand, and product) is product sold in
store by day.

» Both the dimension and fact tables have a grain associated with them. To
understand the grain of a dimension table, we need to understand the
attributes of the dimension table. Every dimension has one or more attributes.
Each attribute associates a parent or child with other attributes. This
parent-child relationship provides different levels of summarization. The
lowest level of summarization or the highest level of detail is referred to as
the grain. The granularity of the dimension affects the design, and can impact
such things as the retrieval of data and data storage.

» A grain refers to the level of detail present in each fact table. Each row should
hold the same type of data. For example, each row could contain daily sales
by store by product or daily line items by store.

Examples of grain definitions are:

A line item on a grocery receipt

A single item on an invoice

A single item on a restaurant bill

A line item on a bill received by a hospital

A monthly snapshot of a bank account statement

A weekly snapshot of the number of products in the warehouse inventory
A single airline ticket purchased on a day

A single bus ticket purchased on a day

YyVyVYyYVYVYVYYY

What is Granularity?

The fact and dimension tables have a granularity associated with them. In
dimensional modeling, the term granularity refers to the level of detail stored in a
table.

For example, a dimension such as date (year, quarter) has a granularity at the
quarter level but does not have information for individual days or months. And, a
dimension such as date (year, quarter, month) table has granularity at the month
level, but does not contain information at the day level.

122 Dimensional Modeling: In a Business Intelligence Environment

Note: Differing data granularities can be handled by using multiple fact tables
(daily, monthly, and yearly tables) or by modifying a single table so that a
granularity flag (a column to indicate whether the data is a daily, monthly, or
yearly amount) can be stored along with the data. However, we do not
recommend storing data with different granularities in the same fact table.

5.3.1 Fact table granularity

For our example retail sales business process from section 5.2, “Identify
business process requirements” on page 105, we identify the grain definition as
an individual line item on a grocery store bill. The grain detail is based on the
requirements findings that were analyzed and documented in section 5.2.7,
“Requirements analysis” on page 118.

The grain definition is represented graphically in Figure 5-7 on page 124. Itis
important to understand that while gathering business requirements, you should
collect documents, such as invoices, receipts, and order memos. These often
have information which can be used to define the grain. Also such documents
have information which helps identify the dimensions and facts for the
dimensional models.

Note: The grain you choose determines the level of detailed information that
can be made available to the dimensional model. Choosing the right grain is
the most important step for designing the dimensional model.

Chapter 5. Dimensional Model Design Life Cycle 123

enTe: Customer : Carlos

inveice #PP0405001

Account No:

pate: _08/29/2005

o 1600 Hours
|Descr|p‘tion Quantity UP Dsc Amount
Grain= 1 Line <@ummmm{ Eqgs 12 $3 $36
item on a Grocery 2. Dairy Milk 2 $2 $ 4
Bill 3. Chocolate Powder 1 $ 9 $9
4. Soda Lime 12 $15 $18
5. Bread 2 $4 $8

Submitted By: _EMployee: Amit 1otal Due: §75
Payment must be received by July 23"™
inorder 1o receive training vouchers!

Fiease return a copy of this invoice with your payment,
Thank you.

Figure 5-7 Grain example: A single line item on a grocery bill
Guidelines for choosing the fact table granularity

The grain definition is the base of every dimensional model. It determines the
level of information that is available. Guidelines for choosing the grain definition
are:

» During the business requirements gathering phase, try to collect any
documents, such as invoice forms, order forms, and sales receipts. Typically,
you will see that these documents have transactional data associated with
them, such as order number and invoice number.

» Documents can often point you to the important elements of the business,
such as customer and the products. They often contain information at the
lowest level that may be required by the business.

» Another important point to consider is the date. Understand to what level of
detail a date is associated with a customer, product, or supplier. Is the
information in the source systems available at the day, month, or year level?
When developing the grain, decide whether you would like information to be
stored at a day, month, or year level.

124 Dimensional Modeling: In a Business Intelligence Environment

5.3.2 Multiple, separate grains

The primary focus of this activity is to determine if there are multiple grains
associated with the business process for which you are designing your
dimensional model.

There can be more than one grain definition associated with a single business
process. In these cases, we recommend that you design separate fact tables
with separate grains and not forcefully try to put all facts in a single fact table.

Differing data granularities can be handled by using multiple fact tables (daily,
monthly, and yearly tables, as examples). Also, consider the amount of data,
space, and the performance requirements when you decide how to handle
multiple granularities.

Criteria for one or multiple fact tables

To determine whether to use one or multiple fact tables, consider the following
criteria:

» One of the most important sets of criteria that helps determine the need for
one or multiple fact tables are the facts. It is important to understand the
dimensionality of the facts to decide whether the facts belong together in one
fact table or separate in fact tables with different grains. For example,
consider Figure 5-7 on page 124 which shows the grain equivalent to a single
line item on a bill. Facts, such as quantity, sales price, and discount per item,
are true to the grain. But facts, such as entire order total or entire order
quantity, would not be true to the grain definition of a single line item on a bill.
We explain the concept of identifying and handling separate grains for the
same business process in more detail in “Handling multiple, separate grains
for a business process” on page 225.

» Are multiple OLTP source systems involved? Remember, each source
system is designed with a particular and very specific purpose. If two source
systems were not serving different purposes, it would be better to have one.
Often each source system will cater to a particular requirement of the
business. Generally, if we are dealing with business processes, such as order
management, store inventory, or warehouse inventory, it is likely that
separate source systems are involved, and probably the use of separate fact
tables is appropriate.

» ltis also important to determine if multiple, unrelated business processes are
involved. Unrelated business processes involve the creation of multiple
separate fact tables. And, it is possible that a single business process may
involve creation of separate fact tables to handle facts that have different
granularity.

Chapter 5. Dimensional Model Design Life Cycle 125

» If you find that a certain dimension is not true to the grain definition, then this
is a sign that it may belong to a new fact table with its own grain definition.

» Consider the timing and sequencing of events. It may lead to separate
processes handling a single event. For example, a company markets its
product. Customers order the products. The accounts receivable department
produces an invoice. The customer pays the invoice. After the purchase, the
customer may return some of the products or send some back for repairs. If
any of the products are out of warranty, this requires new charges, and so on.
Here, several processes are involved in the sequence of single purchase
event. And, each of these processes are likely working with a particular, and
different, point in time. Then, each of these processes would need to be
handled using separate fact tables.

For the example of retail sales, assume that we do not have multiple fact tables,
because the facts (unit sales price (UP), quantity, cost price (Amount), and
revenue earned (Total Due)) defined in Figure 5-7 on page 124 are true to the
grain of the fact table. Therefore, we have one single grain definition, which is an
individual line item on a bill.

We discuss the concept of identifying multiple separate grain definitions (multiple
fact tables) for a single business process in section 6.2.1, “Handling multiple,
separate grains for a business process” on page 225.

Multiple granularities in a single fact table

It is possible to have multiple grains in one fact table. This can be accommodated
by adding a column called the granularity flag. Such a column would indicate
whether the data or row in the fact table is at the daily, monthly, quarterly, or
yearly level. Even though it is possible to store multiple grains in a single fact
table, we do not recommend this approach. We suggest handling multiple grain
definitions by designing separate fact tables and star schemas. Then, if desired,
the separate star schemas may be related by use of conformed dimensions and
conformed facts. For more detail, see section 5.4.3, “Conformed dimensions” on
page 144 and 5.5.2, “Conformed facts” on page 174.

5.3.3 Fact table types
In this activity, we identify the type of fact table involved in the design of the
dimensional model.
There are three types of fact tables:

» Transaction: A transaction-based fact table records one row per transaction.
A detailed discussion about the transaction fact table is available in
“Transaction fact table” on page 231.

126 Dimensional Modeling: In a Business Intelligence Environment

» Periodic: A periodic fact table stores one row for a group of transactions that
happen over a period of time. A detailed discussion about the periodic fact

table is available in “Periodic fact table” on page 232.

» Accumulating: An accumulating fact table stores one row for the entire
lifetime of an event. As examples, the lifetime of a credit card application from
the time it is sent, to the time it is accepted, or the lifetime of a job or college
application from the time it is sent, to the time it is accepted or rejected. For a
detailed discussion of this topic, see “Accumulating fact table” on page 233.

We summarize the differences among these types of fact tables in Table 5-10. It
emphasizes that each has a different type of grain. And, there are differences in
ways that inserts and updates occur in each. For example, with transaction and
periodic fact tables, only inserts occur. But with the accumulating fact table, the
row is first inserted. And as a milestone is achieved and additional facts are
made available, it is subsequently updated.

We discuss each of the three fact tables in more detail, with examples, in 6.2.3,
“Designing different grains for different fact table types” on page 230.

Table 5-10 Comparison of fact table types

Feature Transaction Periodic Accumulating

Grain One row per One row per time One row for the entire
transaction. period. lifetime of an event.

Dimension Date dimension at | Date dimension at Multiple date
the lowest level of | the end-of-period dimensions.
granularity. granularity.

Number of More than periodic | Fewer than Highest number of

dimensions fact type. transaction fact dimensions when

type. compared to other fact
table types.

Conformed Uses shared Uses shared Uses shared conformed

dimensions conformed conformed dimensions.
dimensions. dimensions.

Facts Related to Related to periodic Related to activities
transaction activities. which have a definite
activities. lifetime.

Conformed Uses shared Uses shared Uses shared conformed

facts conformed facts. conformed facts. dimensions.

Chapter 5. Dimensional Model Design Life Cycle 127

Feature Transaction Periodic Accumulating
Database Largest size. At Smaller than the Smallest in size when
size the most detailed Transaction fact compared to the
grain level, tends table because the Transaction and
to grow very fast. grain of the date and | Periodic fact tables.
time dimension is
significantly higher.
Performance | Performs well and | Performs betterthan | Performs well.
can be improved other facttable types
by choosing a because data is
grain above the stored at a less
most detailed. detailed grain.
Insert Yes Yes Yes
Update No No Yes, when a milestone is
reached for a particular
activity.
Delete No No No
Fact table Very fast. Slow in comparison | Slow in comparison to
growth totransaction-based | the transaction and
fact table. periodic fact table.
Need for High, primarily No or very Low, Medium, because the
aggregate because the data primarily because data is primarily stored
tables is stored at a very | the data is already at the day level.
detailed level. stored at a high However, the data in
aggregated level. accumulating fact tables
is lower than the
transaction level.

Note: In the example retail sales business process, the grain is the
transaction fact table type.

5.3.4 Check grain atomicity

In this activity, we review the atomicity (level of detail) of the grain to assure it is at
the most detailed level. This decision should include consideration for anticipated
future needs in order to minimize the potential for a required redesign as
business requirements change.

128

Dimensional Modeling: In a Business Intelligence Environment

The importance of having detailed atomic grain

Grain of the dimensional model is extremely important for the dimensional
design. Even if the business requirements need information at the monthly or
quarterly level, it is better to have the information made available at the daily
level. This is because the more detailed (atomic) the dimensions are, the more
detailed information that canj be provided to the business.

For example, consider the date dimension that has only a year attribute. With
this, we cannot get information at the quarter, month, or day level. To maximize
available information, it is important to choose a detailed atomic grain. In this
example, the choice could perhaps be day.

As an example, assume a grain of one product sold in a store in a retail example.
Here we would not be able to associate a customer with a particular product
purchased because there is only one row for a product. If it were purchased a
thousand times by a thousand different customers, we could not know that.

Of course, there are situations where you can always declare higher-level grains
for a business process by using aggregations of the most atomic and detailed
data. However, the problem is that when a higher-level grain is selected, the
number of dimensions are limited and may be less granular. You cannot drill
down into these less granular dimensions to get a lower level of detail.

Note: For more detailed discussion on the importance of having a detailed
atomic grain, see 6.2.2, “Importance of detailed atomic grain” on page 228.

Trade-offs in considering granularity

Granularity provides the opportunity for a trade-off between important issues in
data warehousing. For example, one trade-off can be performance versus the
volume of data (and the related cost of storing that data). Another can be a
trade-off between the ability to access data at a very detailed level versus
performance, and the cost of storing and accessing large volumes of data.
Selecting the appropriate level of granularity significantly affects the volume of
data in the data warehouse. Along with that, selecting the appropriate level of
granularity determines the capability of the data warehouse to satisfy query
requirements.

To help make this clear, refer to the example shown in Figure 5-8 on page 130.
Here we are looking at transaction data for a bank account. On the side of the
high level of detail, we see that 50 is the average number of transactions per
account and the size of the record for a transaction is 150 bytes. As a result, it
would require about 7.5 KB to store the very detailed transaction records to the
end of the month. The side with the low level of detail (with a higher level of
granularity) is shown in the form of a summary by account per month. Here, all

Chapter 5. Dimensional Model Design Life Cycle 129

the transactions for an account are summarized in only one record. The
summary record would require a larger record size, perhaps 200 bytes instead of
the 150 bytes of the raw transaction, but the result is a significant savings in
storage space.

High level of detail Low level of detail

- low level of granularity - high level of granularity
T dosh o of svry =l
ma%e%y'an Sacount o o | | The summary of transactions

made by an account for a month
"’
Trans, Summa 1 record

II:.‘l_ate 50 records i MD"lh (YYMM} per month
st cobyer | | | SRR | 2mues
TRANS TYPE
TRANS AMT 7500 res| | | CNTof CRepi Permenth

Figure 5-8 Granularity of data: The level of detail trade-off

In terms of disk space and volume of data, a higher granularity provides a more
efficient way of storing data than a lower granularity. You also have to consider
the disk space for the index of the data as well. This makes the space savings
even greater. Perhaps a greater concern is with the manipulation of large
volumes of data. This can impact performance, at the cost of more processing
power.

There are always trade-offs to be made in data processing, and this is no
exception. For example, as the granularity becomes higher, the ability to answer
different types of queries (that require data at a more detailed level) diminishes. If
you have a very low level of granularity, you can support any queries using that
data at the cost of increased storage space and diminished performance.

Look again at Figure 5-8. With a low level of granularity, you can answer the
query: How many credit transactions were there for John's demand deposit
account in the San Jose branch last week? With the higher level of granularity,
you cannot answer that question, because the data is summarized by month
rather than by week.

If the granularity does not impact the ability to answer a specific query, the
amount of system resources required for that same query can still differ

130 Dimensional Modeling: In a Business Intelligence Environment

considerably. Suppose that you have two tables with different levels of granularity,
such as transaction details and a monthly account summary. To answer a query
about the monthly report for channel utilization by accounts, you could use either
of those two tables without any dependency on the level of granularity. However,
using the detailed transaction table requires a significantly higher volume of disk
activity to scan all the data as well as additional processing power for calculation
of the results. Using the monthly account summary table requires significantly
less resource.

In deciding about the level of granularity, you must always consider the trade-off
between the cost of the volume of data and the ability to answer queries.

5.3.5 High level dimensions and facts from grain

In this activity, we identify high level preliminary dimensions and facts from
whatever can be understood from the grain definition. No detailed analysis is
carried out to identify these preliminary dimensions and facts.

For our retail sales business process, we defined the grain (see 5.3.1, “Fact table
granularity” on page 123) as: An individual line item on a grocery bill. This is
shown in Figure 5-9.

Time Customer Employee

I I I Preliminary Facts are:
1) Unit Sales Price

| Grain=1 Line Item on a Grocery Bill T 2) Quantity Sold
3) Total $ Amount

l l l 4) Discount

Bill Number Date Supplier

Figure 5-9 Identifying high level dimensions and facts with the grain

Once we define the grain appropriately, we can easily find the preliminary
dimensions and facts.

Chapter 5. Dimensional Model Design Life Cycle 131

Note: Preliminary facts are facts that can be easily identified by looking at the
grain definition. For example, facts such as unit price, quantity, and discount
are easily identifiable by looking at the grain. In other words, preliminary facts
are easily visible on the grocery store bill we saw in Figure 5-7. However,
detailed facts such as cost, manufacturing price per line item, and
transportation cost per Item are not preliminary facts that can be identified by
looking at the grain definition. Such facts are hidden and typically never visible
on the grocery store bill. Preliminary facts are not the final set of facts; the
formal detailed fact identification occurs in the Identify the facts phase in 5.5,
“Identify the facts” on page 169.

Using the one line item grain definition shown in Figure 5-9 on page 131, we can
identify all things that are true (logically associated with) to the grain. Table 5-11
shows high level dimensions and facts that are identified from the grain.

Table 5-11 High level dimensions and facts

Dimensions Facts (KPIs)
Customer country Sales revenue
Product (Brand, category) Quantity of units sold
Sale Date Total cost

Supplier of product Discount

Time of sale

Employee, sales person, or sales rep

Bill

Note: These preliminary high level dimensions and facts are helpful when we
formally identify dimensions (see 5.4.1, “Dimensions” on page 135) and facts
(see 5.5.1, “Facts” on page 171) in the later steps of the DMDL. The
dimensions and facts get iteratively refined in each of the phases of the
DMDL.

5.3.6 Final output of the identify the grain phase

The grain definition report is the final output report for this phase. It consists of
one or multiple definitions for the grain of the business process, and the type of
fact table (transaction, periodic, or accumulating) being used. It also includes the
high level preliminary dimensions and facts.

132 Dimensional Modeling: In a Business Intelligence Environment

5.4 Identify the dimensions

In this phase, we focus on the third step of the DMDL, which is identify the
dimensions. This is depicted in Figure 5-10.

Identify Model Components

Requirements Grain Dimensions Facts
Determine All X
Document/Study Identify Fact Table Dimensions | Identify Facts |
Enterprise Business Granularity
Processes
Identify Degenerate and X =
) ; Identify Conformed 7] <
Select Business _L Identify Multiple _L Conformed Dimensions Facts E g
Process to Model 'g Separate Grains Identify Dimensional g g g
— o B fora S;:r?gle = Attributes (Granularity) - o g o
Identify High level 2 usiness Frocess 5] and Attribute Hierarchies Identify Fact types 5 s
Entities and o o (Additive, Semi Additive, g. o &»
= = :
Measures for -5 - % Identify Date and Time N_Iczn-?ddlltlge, D:rlved, & g =
Conformance £ Identify the Fact S Granularity extual, Pseudo, or ol 2 c
= Table Types = Fact-less Facts) and 7] o®
Identify Data O Ml (Transaction, £ [ontity Slowly Changing | L 28f2ut Aggregate Rules || & ‘é =
Sources g Periodic, and a Dimensions £|| €<
£ Accumulating) c x= ‘w9
Select Requirements .g 'E Identify Fast Changing | Year-to-date Facts | 2 8 %
Gathering Approach =) (O] Dimensions 5, —_ ®
(Source Driven 3 - ® S o
or oz || Check Grain for = - | Event Fact Tables | o o .
) Atomicit Identify cases for a n O
User Driven) Y Snowflaking > E‘ £
— : || - | Composite Key Design | = o §
equirements Identify preliminar Dimensional Challenges (3
Gathering fy p y > é

(Multi-valued, Garbage,
Heterogeneous, Hot
Swappable,
Roleplaying)

candidates for
dimensions and
facts from the grain

Fact Table
Sizing and Growth

Requirements
Analysis

L <= = L = Iterate L = = L

Metadata Management

ﬂ

-

Figure 5-10 Dimensional Model Design Life Cycle
Table 5-12 shows the activities associated with this phase.

Table 5-12 Activities in the identify the dimensions phase

Seq. Activity name Activity description
no.
1 Identify dimensions Identifies the dimensions that are true to the
grain identified in 5.3, “Identify the grain” on
page 121.
2 Identify degenerate Identifies one or more degenerate dimensions.
dimensions
3 Identify conformed Identifies any existing shared dimensions in the
dimensions data warehouse or other star schemas used for
designing the dimensional model.

Chapter 5. Dimensional Model Design Life Cycle 133

no.

Seq.

Activity name

Activity description

Identify dimensional
attributes and dimensional
hierarchies

Identifies the dimension attributes. It also
identifies hierarchies, such as balanced,
unbalanced, or ragged, that may exist in the
dimensions. Techniques are suggested to
handle these hierarchies in the design.

Identify date and time
granularity

Identifies the date and time dimensions.
Typically these dimensions have a major impact
on the grain and size of the dimensional model.

Identify slowly changing
dimensions

Identifies the slowly changing dimensions in the
design. Three techniques (Type-1, Type-2, and
Type-3) are described.

Identify very fast changing
dimensions

Identifies very fast changing dimensions and
describes ways of handling them by creating
one or more mini-dimensions.

Identify cases for
snowflaking

Identifies what dimensions need to be
snowflaked.

Other dimensional
challenges to look for are:

Other challenges relating to dimensions:

— ldentify Multi-valued
Dimensions

Looks for multi-valued dimensions and
describes ways of handling them, such as by
using bridge tables.

— ldentify Role-Playing
Dimensions

Describes ways of looking for dimensions that
can be implemented by using role-playing.

— ldentify Heterogeneous
Dimensions

Describes ways of identifying heterogeneous
products and implementing them.

— ldentify Garbage
Dimensions

Describes ways to look for low-cardinality fields
and using them to make a garbage dimension.

— ldentify Hot Swappable
Dimensions

Describes ways of creating profile-based tables
or hot swappable dimensions to improve
performance and secure data.

Note: We have listed activities to look into while designing dimensions. The
purpose is to make you aware of several design techniques you can use.
Knowing they exist can help you make a solid dimensional model.

134 Dimensional Modeling: In a Business Intelligence Environment

5.4.1 Dimensions

During this phase, we identify the dimensions that are true to the grain we chose
in 5.3, “Identify the grain” on page 121.

Dimension tables

Dimension tables contain attributes that describe fact records in the fact table.
Some of these attributes provide descriptive information; others are used to
specify how fact table data should be summarized to provide useful information
to the business analyst. Dimension tables contain hierarchies of attributes that
aid in summarization. Dimension tables are relatively small, denormalized lookup
tables which consist of business descriptive columns that can be referenced
when defining restriction criteria for ad hoc business intelligence queries.

Important points to consider about dimension tables are:

» Each dimension table has one and only one lowest level element, or lowest
level of detail, called the dimension grain, also referred to as the granularity
of the dimension.

» Dimension tables that are referenced, or are likely to be referenced, by
multiple fact tables are conformed dimensions. If conformed dimensions
already exist for any of the dimensions in your model, you are expected to
use the conformed versions. If you are developing new dimensions with
potential for usage across the entire enterprise, you are expected to develop
a design that supports anticipated enterprise needs. If you create a new
dimension in your design which you think could potentially be used by other
dimensional models or business processes, then you should design the new
dimension keeping in mind your business requirements and the future
anticipated needs. Conformed dimensions are discussed in more detail in
“Conformed dimensions” on page 144.

» Each non-key element (other than the surrogate key) should appear in only
one dimension table.

» All dimension table primary keys should be surrogate keys. An OLTP source
system primary key should not be used as the primary key of the dimension
table. Surrogate keys are discussed in detail in “Primary keys for dimension
tables are surrogate keys” on page 139.

» Most dimensional models will have one or more date and time dimensions.
Date and time dimensions are handled separately. The concepts relating to
date and time dimensions are discussed in “Date and time granularity” on
page 155.

» If a dimension table includes a code, then in most cases the code description
should be included as well. For example, if region locations are identified by a
region code, and each code represents a region name, both the code and the

Chapter 5. Dimensional Model Design Life Cycle 135

region name should be included in the dimension table. It is important to
understand that the quality of a dimensional model is directly proportional to
the quality of the dimensional attributes.

» Typically, dimensional models should not have more than 10-15 dimensions.
If you have more dimensions, you might need to find ways to merge
dimension tables into one.

» The primary keys (surrogate keys) of the dimension tables should be included
in the fact table as foreign keys.

» Typically, each dimension table will have one or more additional Not¢
Applicable scenario records. This is primarily because of the fact that the
foreign key in a fact table can never be null, since by definition that violates
referential integrity. This concept is explained in more detail in “Insert a
special customer row for the “Not applicable” scenario” on page 150.

» The rows in a dimension table establish a one-to-many relationship with the
fact table. For example, there may be a number of sales to a single customer,
or a number of sales of a single product. The dimension table contains
attributes associated with the dimension entry; these attributes are rich and
business-oriented textual details, such as product name or customer name.
Attributes serve as report labels and query constraints.

Note: Each dimension attribute should take on a single value in the context of
each measurement inside the fact table. However, there are situations where
we need to attach a multi-valued dimension table to the fact table. In other
words, there are situations where there may be more than one value of a
dimension for each measurement. Such cases are handled using multi-valued
dimensions, which are explained in detail in 6.3.10, “Multi-valued dimensions”
on page 288.

To summarize, in this activity we formally identify all dimensions that are true to
the grain. By looking at the grain definition, it is relatively easy to define the
dimensions. The dimensions for our retail sales example (for a grocery store) are
depicted graphically (shown in Figure 5-11 on page 137) using the grocery bill.

136 Dimensional Modeling: In a Business Intelligence Environment

Bill Number#
Customer ainTe: Customer: Carlos

invoice #PP0405001 (Degenerate
AccountMe: Dimension)
 owe _ 08/29/2005 Date
Store Store=s1394 1600 Hours e

Grain =1 Line Inmrlpﬂon Quantity UP__Dsc Discount
Item on a 1. Eggs 12
GroceryBill]| 2. Dairy Milk 2
3. Chocolate Powder 1 Unit Price
4. Soda Lime 12
Product <@z 5 Bread 2 Quantity
Employee @mmm submitted By: _ EMployee: Amit — yota) pue: $75mmm): Total Amt

Payment must be received by July 23™
in order 1o receiva training voucherns!

Flease relum a copy of this invoice with your payment,
Thank you.

Figure 5-11 Graphical identification of dimensions and facts

List all the dimensions that are thought to be associated with this grain. The
dimensions identified are shown in Table 5-13. For the dimensions, also define
the level of detail (granularity) that to include in the dimension. However, the
descriptive and detailed attributes are defined later in 5.4.4, “Dimensional
attributes and hierarchies” on page 145.

Table 5-13 Dimensions and facts from grain

Seq. Dimensions Dimension granularity
no.
1 Time Itis true to the grain, and has a description of time to the

hour and minute level.

2 Customer It is true to the grain, and this dimension describes the
customers.
3 Employee It is true to the grain, and this dimension describes the

employees working in the stores and associated with
the retail sale.

Chapter 5. Dimensional Model Design Life Cycle 137

138

Seq. Dimensions Dimension granularity

no.

4 Supplier It is true to the grain, and this dimension describes the
suppliers of the products.

5 Product It is true to the grain, and this dimension describes the
products, including their brand and category.

6 Date It is true to the grain, and this dimension describes the
different dates on which the products were sold. The
date includes the day, month, quarter, and year
description.

7 Store It is true to the grain, and this dimension describes the
stores which sold the products.

8 Bill Number It is true to the grain, and this dimension describes the

(Pos_Bill_Number) | Bill or receipt of the store. This is handled as a
degenerate dimension, described in section 5.4.2,
“Degenerate dimensions” on page 142.

The preliminary dimensional schema that we get at this point is shown in
Figure 5-12 on page 139. The dimension attributes are mentioned in the
dimensional as TBD (To be Determined).

Note: The facts unit price, discount, quantity, and revenue are the preliminary
facts identified from 5.3.5, “High level dimensions and facts from grain” on
page 131. The facts and several other derived measures are identified in 5.5,
“Identify the facts” on page 169.

Dimensional Modeling: In a Business Intelligence Environment

SUPPLIER
¥ | SUPPLIERKEY
[Supplier Attributes TBD]

PRODUCT ﬁ
[Productkey
[Product Attributes TED]] [| Retail_Sales * EMPLOYEE
| |PRODUCTKEY % [Employeekey
| |EMPLOYEEKEY [Employee Attributes TED
ld——rai| | CUSTOMERKEY
SIORE | |suPPLIERKEY
| StoreKey | pATED
[Store Attributes TBD] : o
__|sToRED 2
|| BrL_nuMBeR(pD)] TIME
— I | [UNIT PRICE FACT] 2 [Timeld
2 [Daterd || [DISCOUNT FACT] [Time Attributes TBO]
af A | [IQuANTITY FACT]
[Date Attributes TED] ||| rRevenuE FacT]
*Preliminary Facts «—— CUSTOMER
To be iteratively formalized | |customerkey .
.(‘ . y 5 [Customer Attributes TED TBD=To be Determined
in the ‘Identify Facts’ Phase)

BILL_NUMBER (DD) = Degenerate Dimension

Figure 5-12 Preliminary retail sales grocery store dimensional model

Note: BILL_NUMBER is a degenerate dimension. It has no attributes
associated with it and goes inside the fact table. We discuss degenerate
dimensions in 5.4.2, “Degenerate dimensions” on page 142.

Primary keys for dimension tables are surrogate keys

It is important that primary keys of dimension tables remain stable. We strongly
recommend that surrogate keys are created and used for primary keys for all
dimension tables. In this section, we discuss what surrogate keys are, and why it
is important to use the surrogate keys as the dimension table primary keys.

What are surrogate keys?

Surrogate keys are keys that are maintained within the data warehouse instead
of the natural keys taken from source data systems. Surrogate keys are known
by many other aliases, such as dummy keys, non-natural keys, artificial keys,
meaningless keys, non-intelligent keys, integer keys, number keys, and technical
integer keys. The surrogate keys join the dimension tables to the fact table.
Surrogate keys serve as an important means of identifying each instance or
entity inside a dimension table.

Reasons for using surrogate keys are:

» Data tables in various OLTP source systems may use different keys for the
same entity. It may also be possible that a single key is being used by different

Chapter 5. Dimensional Model Design Life Cycle 139

instances of the same entity. This means that different customers might be
represented using the same key across different OLTP systems.

This can be a major problem when trying to consolidate information from
various source systems. Or for companies trying to create/modify data
warehouses after mergers and acquisitions. Existing systems that provide
historical data might have used a different numbering system than a current
OLTP system. Moreover, systems developed independently may not use the
same keys, or they may use keys that conflict with data in the systems of
other divisions. This situation may not cause problems when each
department independently reports summary data, but can when trying to
achieve an enterprise-wide view of the data.

This means that we cannot rely on using the natural primary keys of the
source system as dimension primary keys because there is no guarantee that
the natural primary keys will be unique for each instance. A surrogate key
uniquely identifies each entity in the dimension table, regardless of its natural
source key. This is primarily because a surrogate key generates a simple
integer value for every new entity.

» Surrogate keys provide the means to maintain data warehouse information
when dimensions change. To state it more precisely, surrogate keys are
necessary to handle changes in dimension table attributes. We discuss in
more detail in “Slowly changing dimensions” on page 159.

» Natural OLTP system keys may change or be reused in the source data
systems. This situation is less likely than others, but some systems have
reuse keys belonging to obsolete data or for data that has been purged.
However, the key may still be in use in historical data in the data warehouse,
and the same key cannot be used to identify different entities.

The design, implementation, and administration of surrogate keys is the
responsibility of the data warehouse team. Surrogate keys are maintained in
the data preparation area during the data transformation process.

» One simple way improve performance of queries is to use surrogate keys.
The narrow integer surrogate keys mean a thinner fact table. The thinner the
fact table, the better the performance.

» Surrogate keys also help handle exception cases such as the 7o Be
Determined or Not Applicable scenarios. This is discussed in “Insert a special
customer row for the “Not applicable” scenario” on page 150.

» Changes or realignment of the employee identification number should be
carried in a separate column in the table, so information about the employee
can be reviewed or summarized, regardless of the number of times the
employee record appears in the dimension table. For example, changes in the
organization sales force structures may change or alter the keys in the
hierarchy.

140 Dimensional Modeling: In a Business Intelligence Environment

This is a common situation. For example, if a sales representative is
transferred from one region to another, the organization may want to track all
sales for the sales representative with the original region for data prior to the
transfer date, and sales data for the sales representative in the new region
after the transfer date.

To represent this organization of data, the salesperson's record must exist in
two places in the Sales_Team dimension table. This is certainly not possible if
the sales representative's company employee identification number is used
as the primary key for the dimension table, because a primary key must be
unique. A surrogate key allows the same sales representative to participate in
different regions in the dimension hierarchy.

In this case, the sales representative is represented twice in the dimension
table with two different surrogate keys. These surrogate keys are used to join
the sales representative's records to the sets of facts appropriate to the
various regions in the hierarchy occupied by the sales representative.

The sales representative's employee number should be carried in a separate
column in the table so information about the sales representative can be
reviewed or summarized regardless of the number of times the sales
representative's record appears in the dimension table. The employee
number also helps us go back to the OLTP system from where the record was
loaded.

Note: Use a separate field in the dimension table to preserve the natural
source system key of the entity being used in the source system. This
helps us to go back to the original source if we need to track from where
(which OLTP Source) the data came into the dimensional model. Also, we
are able to summarize fact table data for a single entity in the fact table
regardless of the number of times the entity’s record appears in the
dimension table.

GUID (Globally Unique Identifiers) as surrogate keys

We should strictly avoid the use of GUIDs as primary keys for the dimension
tables. GUIDs are known to work well in the source OLTP systems, but they are
difficult to use when it comes to data warehouses. This is primarily because of
two reasons:

1.

The first reason is storage. GUIDs use a significant amount of space
compared to their integer counterparts. GUIDs take about 16 bytes each,
where an integer takes about 4 bytes.

The second reason is that indexes on GUID columns are relatively slower
than indexes on integer keys because GUIDs are four times larger.

Chapter 5. Dimensional Model Design Life Cycle 141

Note: Every join between dimension and fact tables in the dimensional model
should be based only on artificial integer surrogate keys. Use of natural OLTP
system primary keys for dimensions should be avoided.

How to identify dimensions from an E/R model

The source of a dimensional model is either the enterprise data warehouse or
the OLTP source systems. It would be correct to say both the data warehouse
and the OLTP source systems are typically based on E/R models; they are in
3NF. We think if you can create a dimensional model from an E/R model, then
you should be able to create dimensional models either from the data warehouse
or directly from the OLTP source systems.

The following are the steps involved in converting an E/R model to a dimensional
model:

1. Identify the business process from the E/R model.

2. Identify many-to-many tables in the E/R model to convert to fact tables.
3. Denormalize remaining tables into flat dimension tables.

4. Identify date and time from the E/R model.

This process of converting an existing E/R model (which could be a data
warehouse or an OLTP source system) is explained in detail in 6.1, “Converting
an E/R model to a dimensional model” on page 210.

5.4.2 Degenerate dimensions

In this section, we focus on identifying degenerate dimensions, which are
dimensions without any attributes. They are not typical dimensions, but often
simply a transaction number that is placed inside the fact table. In order to
understand the concept of degenerate dimensions, we have to understand the
source of the degenerate dimension, which originates in the form of some
transaction numbers inside the OLTP system.

All OLTP source systems generally consist of transaction numbers, such as bill
numbers, courier tracking number, order number, invoice number, application
received acknowledgement number, ticket number, and reference numbers.
These transaction numbers in the OLTP system generally tell about the
transaction as a whole. Consider the retail sales example (for grocery store) and
reanalyze the graphical bill as shown in Figure 5-13 on page 143.

142 Dimensional Modeling: In a Business Intelligence Environment

Bill Number#

Customer ente:_Customer: Carlos Invoice #PP0405001 (Degenerate
Account Ne: Dimension)
Store Store=S1394 1600 Hours Time

Discount

Grain =1 Line Description Quantity UP Dsc
Item on a) 1. Eggs 12 $3
Grocery Bill | 5 Dairy Milk 2 $2 T e4

3. Chocolate Powder 1 $9
4. Soda Lime 12 $1.5
Product <¢@==mm 5 Bread 2 9

Unit Price

Quantity

Employee mmmm s pminedmy: EMployee: Amit 1ol pue: $75mmm) Total Amt
Payment must be received by July 23™
im order to receive training vouchers!

Plaase return a copy of this invoice with your payment.
Thank you.

Figure 5-13 Retail sales grocery store bill

Try to analyze the Bill Number# information for the retail sales grocery store
example. The Bill Number# is a transaction number that tells us about the
transaction (purchase) with the store. If we take an old Bill Number# 973276 to
the store and ask its manager to find out information relating to it, we may get all
information related to the bill. For example, assume that the manager replies that
the Bill Number# 973276 was generated on August 11, 2005. The items
purchased were Apples, Oranges and Chocolates. The manager also tells us the
quantity, unit price, and discount for each of the items purchased. He also tells us
the total price. In short, the Bill Number# tells us the following information:

Transaction date

» Transaction time

» Products purchased

» Quantity, unit price, and amount for each purchased product

v

If we now consider the Bill for our retail sales example, the important point to note
is that we have already extracted all information related to the Bill Number# into
other dimensions such as date, time, and product. Information relating to
quantity, unit price, and amount charged is inside the fact table.

Chapter 5. Dimensional Model Design Life Cycle 143

A degenerate dimension, such as Bill Number#, is there because we chose the
grain to be an individual line item on a bill. So, the Bill Number# degenerate
dimension is there because the grain we chose represents a single transaction or
transaction line item.

The Bill Number# is still useful because it serves as the grouping key for
grouping together of all the products purchased in a single transaction or for a
single Bill Number#. Although to some, the Bill Number# looks like a dimension
key in the fact table, it is not, because all information relating to the Bill Number#
has been allocated to different dimensions. Hence, the so-called Bill Number#
dimension has no attributes, and we refer it to as a degenerate dimension.

Other important things to consider about degenerate dimensions are:
» How to identify a degenerate dimension for a dimensional design.

» Should we make a separate dimension for the Bill Number#?

» Should we place the Bill Number# inside the fact table? If yes, why?
» How to realize that a degenerate dimension is missing.

» Under what situation will the Bill Number# no longer be a degenerate
dimension? We discuss one example in “Identify degenerate dimensions” on
page 384. We see that Invoice Number (a type of transaction number) is
handled as a separate dimension and not as a degenerate dimension inside
the fact table.

We discuss interesting topics about degenerate dimensions in more detail in
6.3.1, “Degenerate dimensions” on page 240.

5.4.3 Conformed dimensions

In this activity, we identify any conformed shared dimensions that are available to
use instead of redesigning the dimensions. In this activity, we identify whether a
dimension being used already exists inside the enterprise data warehouse or
dimensional model.

What are conformed dimensions?

A conformed dimension means the same thing to each fact table to which it can
be joined. A more precise definition is that two dimensions are conformed if they
share one, more than one, or all attributes that are drawn from the same domain.
A dimension may be conformed even if it contains only a subset of attributes
from the primary dimension.

Typically, dimension tables that are referenced or are likely to be referenced by
multiple fact tables (multiple dimensional models) are called conformed
dimensions. If conformed dimensions already exist for any of the dimensions in

144 Dimensional Modeling: In a Business Intelligence Environment

the data warehouse or dimensional model, you are expected to use the
conformed dimension versions. If you are developing new dimensions with
potential for usage across the entire enterprise warehouse, you are expected to
develop a design that supports anticipated enterprise warehouse needs. In order
to find out the anticipated warehouse needs, you might need to interact with
several business processes to find out how they would define the dimensions.

To quickly summarize, the identify conformed dimensions activity involves the
following two steps:

1. Identifying whether a dimension being used already exists. If the dimension
being used already exists in the enterprise data warehouse, then that
dimension has to be used. If the dimension would exist, then we would not
identify dimensional attributes (see “Dimensional attributes and hierarchies”
on page 145) for that particular dimension. A dimension may be conformed to
the existing dimension even if it contains only a subset of attributes from the
primary dimension.

2. For a nonexistent new dimension, create a new dimension with planned
long-term cross-enterprise usage. When a dimensional model requires a
dimension which does not exist in the enterprise warehouse or any other
dimensional models, then a new dimension must be created. While creating
this new dimension, you must be certain to interact with enterprise business
functions to find out about their future anticipated need of the new dimension.

5.4.4 Dimensional attributes and hierarchies

This activity involves the following:

» Identify dimensional attributes for the dimensions we identified in section
“Dimensions” on page 135.

» Identify the various hierarchies (such as balanced, unbalanced, and ragged)
associated with each of the dimensions.

Why are good quality dimensional attributes important?

After having identified the dimensions, the next step is to fill the dimensions with
good quality attributes. The dimension tables contain business descriptive
columns that users reference to define their restriction criteria for ad hoc
business queries.

The quality of a good dimensional model is directly proportional to the quality of
attributes present inside these dimension tables. The dimension table attributes
show up as report labels inside the reports for senior management.

So, which attribute should be included in the dimensions? To help answer that
question, here are points to consider:

Chapter 5. Dimensional Model Design Life Cycle 145

» Non-key columns are generally referred to as attributes. Every dimension
table primary key should be a surrogate key, which is usually not considered
an attribute because it is simply an integer and is not used for analysis.

» Use a separate field in the dimension table to preserve the natural source
system key of the entity being used in the source system.

» A schema design that contains complete, consistent, and accurate attribute
fields helps enable queries that are intuitive, and reduces the support burden
on the organization responsible for database management and reports.

» A well-designed schema includes attributes that reflect the potential areas of
interest and attributes that can be used for aggregations as well as for
selective constraints and report breaks.

» If a dimension table includes a code, in most cases, include the code
description as well. As an example, if branch locations are identified by a
branch code, and each code represents a branch name, then include both the
code and the name. Avoid storing cryptic decodes inside a dimensional table
attribute to save space.

» Be sure attribute names are unique in the model. If you have duplicate names
for different attributes, use the prime term (entity name) to create a distinction.
For example, if you have multiple attributes called Address Type Code,
rename one Beneficiary Address Type Code, and another might be Premium
Address Type Code.

» The dimensional attributes serve as headings of the columns of the report
and should be descriptive and easy to understand. For example, for a given
situation where you want to store a flag such as 0/1 or Y/N, it is better to store
something descriptive, such as Yes/No.

» An attribute can be defined to permit missing values in cases where an
attribute does not apply to a specific item or its value is unknown.

» An attribute may belong to more than one hierarchy.

» Use only the alphabetic characters A-Z and the space character. Do not use
special characters.

» While naming attributes, do not use possessive nouns. For example, use
terms such as Recipient Birth Date rather than Recipient's Birth Date.

» Do not reflect permitted values in the attribute name. For example, the
attribute name Employee Day/Night Code refers to code values designating
day shift or night shift employees working in the grocery store. The attribute
must be named to reflect the logical purpose and the entire range of values.
For example, Employee Shift Type Code which allows for an expandable set of
valid values.

» Do not include very large names for building attributes.

146 Dimensional Modeling: In a Business Intelligence Environment

» Properly document all dimensional attributes.

Note: It is important to remember that the fact table occupies 85-90% of space
in large dimensional models. Hence, saving space by using decodes in
dimensional attributes does not save much overall space, but these decodes
affect the overall quality and understandability of the dimensional model.

In 5.4.1, “Dimensions” on page 135, we designed the preliminary star schema
shown in Figure 5-14.

SUPPLIER
SUPPLIERKEY
[Supplier Attributes TBD]

N

PRODUCT
7 | Productkey g
[Product Attributes TBOT] [* Retail_Sales EMPLOYEE
| PRODUCTKEY # |EmployeeKey
| |EMPLOYEEKEY [Employee Attributes TBD
l-e——oal | CUSTOMERKEY
SIORE || SUPPLIERKEY
F |Storekey | paTEDD
[Store Attributes TBD] : TMED
__|sTorem 2
|| Bl _NUMBER(DD)] TIME
o = | [UNIT PRICE FACT] 7 [Tmezd
7 |Datec | |[DISCOUNT FACT] [Time Attributes TBD]
ata Attributes TED] | [[QuanTITY FACT]
[Date Attributes TED) || mevenue FacT]
*Preliminary Facts «— CUSTOMER
To be iteratively formalized |] Custemerkey .
.(. . y y [Customer Attributes TBD TBD=To be Determined
in the ‘Identify Facts’ Phase)

BILL_NUMBER (DD) = Degenerate Dimension

Figure 5-14 Preliminary retail sales grocery store dimensional model

Now fill this preliminary star schema with detailed dimension attributes for each
dimension. Before filling in the attributes of various dimension tables, define the
granularity of each dimension table as shown in Table 5-14.

Note: While deciding on attributes for each of the dimensions, keep in mind
the requirements analysis performed in 5.2.7, “Requirements analysis” on
page 118.

Table 5-14 Granularities for dimension tables

Seq. Dimension table

no.

Granularity of the dimension table

1 Employee This dimension stores information at the single

employee level. Also includes manager information.

Chapter 5. Dimensional Model Design Life Cycle 147

148

Seq. Dimension table Granularity of the dimension table

no.

2 Supplier Contains information about supplier's company name
and address.

3 Date This dimension stores information down to the day level
including month, quarter, and year.

4 Time This dimension stores information about hour, and a
description of the time, such as lunch time, early
morning shift, morning, afternoon shift, and night shift.

5 Customer This dimension stores information about the customer.

6 Product This dimension stores information about the product,
brand, and category name.

7 Store This dimension stores information about the store
dimension.

8 Bill Number This is a degenerate dimension. It has no attributes and
is present as a number (BILL_NUMBER) inside the fact
table.

We explain the dimensions, along with their detailed attributes, below:

» Employee dimension: Shown in Figure 5-15 on page 149, the employee
dimension stores information about the employees working at the store. The
grain of the employee dimension table is information about a single
employee.

Dimensional Modeling: In a Business Intelligence Environment

EROHIGH SUPPLIER
% [Productkey it I g | sUPPLIERKEY
[Product Attributes TBD]] J J [supplier Attributes TED]
EMPLOYEE 3= Retail_Sales STORE
7 [EMPLOYEEKEY ~ PRODUCTKEY [P=%" ¢ [5toreKey
| EMPLOYEEID Natural T |EmPLOYERKEY [Store Attributes TBD]
" |rEPORTS_TO_ID | cUSTOMERKEY
| [FULL MamE] | SUPPLIERKEY [ro——= TIME
| |LasTNAME " |paTEID 7 | Timeld
| |FIRsTNAME || mmeED [Time Attributes TBO]
| manaGER NAME] " |sToRED
" |oos | BILL_NUMBER(DD)]
" |HIREDATE I [uNIT PRICE FACT] [Fa—==| CUSTOMER
| aDCRESS | piscounT FacT] :?‘ CustomerKey
ey | rQuanTITY FACT] [Customer Attributes TBD
" |rEGION T | [REVENUE FACT]
| |posTALCODE —
| |counmmy
" |HomEPHONE
| |EXTENSION "
Date
7 |Dateld
*Preliminary Facts [ate Attributes TEDl | TBD=To be Determined
(To be iteratively formalized in BILL NUMBER (DD) = D bi)
the Identify Facts Phase) - (DD) = Degenerate Dimension

Figure 5-15 Employee dimension

The business requirements analysis in Table 5-8 on page 118 shows that
questions Q2 and Q83 require the business to see sales figures for good and bad
performing employees, along with the managers of these employees. The
manager name column in the employee dimension table helps in that analysis.

» Supplier dimension: As shown in Figure 5-16 on page 150, the supplier
table consists of attributes that describe the suppliers of the products in the
store.

Chapter 5. Dimensional Model Design Life Cycle 149

PRODUCT

:{e‘ Productiey) STORE
[Product Attributes TBD]] 7 | Storekey
5 [Store Attributes TBD]
d
& EMPLOYEE
Retail_Sales *

ool [PRODUCTKEY
EMPLOYEEKEY
CUSTOMERKEY
SUPPLIERKEY
DATEID

TIMEID

STOREID
[BILL_NUMBER(DD)]
[UNIT PRICE FACT]

SUPPLIER
SUPPLIERKEY
SUPPLIERID Natural
[COMPANY NAME]
[CONTACT NAME]
[CONTACT TITLE]
ADDRESS

Iy

B | EMPLOYEEKEY -~
EMPLOYEEID_Matural

REPORTS TOID [

TIME
% [Timeld
[Time Attributes TBD]

1

CUSTOMER

CCLCTITTTTT]

LLLITTTIIIT] =

REGION [DISCOUNT FACT] R | Customerkey s
POSTALCODE [QUANTITY FACT] [Customer Attributes i[>
COUNTRY [REVENUE FACT]
PHONE
FaX | pate
? |pateld
[Date Attributes TBD]

*Preliminary Facts
(To be iteratively formalized TBD=To be Determined

in the Identify Facts Phase) g, | \imBER DD) = Degenerate Dimension

Figure 5-16 Supplier dimension

» Customer dimension: The customer dimension is shown in Figure 5-17 on
page 151. This dimension consists of customer information.

Insert a special customer row for the “Not applicable” scenario
Typically, in a store environment, many customers are unknown to the store. We
need to include a row in the customer dimension, with its own unique surrogate
key, to identify a Customer unknown to store or Not applicable, and to avoid a
null customer key in the fact table. The concepts of referential integrity are
violated if we put a null in a fact table column declared as a foreign key to a
dimension table. In addition, null keys are the source of great confusion to many
because they cannot join on null keys.

In the customer dimension table, we insert a Customer unknown to store or Not
applicable row inside the customer table and link the fact table row
(measurements) to this row when the customer is unknown.

150 Dimensional Modeling: In a Business Intelligence Environment

PRODUCT EMPLOYEE
% |Productiey 7 |EmPLOYEEKEY -
[Product Attributes TBD] EMPLOYEEID_Matural
ﬁ REPORTS TOID [o
CUSTOMER | -
7 [CUSTOMERKEY Retail_Sales SUPPLIER
| CUSTOMERID_NATURAL | |PRODUCTKEY 7 |suPPLIERKEY ~
| companiaME | |empLovERKEY SUPPLIERID_Natural
| CONTACTNAME | |cusTomERKEY [COMPANY NAME]
| | ADDRESS | |supPLIERKEY Frrn o naar)
| DATEID
CImY] = —p]
| More........] __|mvED TIME
T |age | |sTOREID BfTimeld
" |ncome || tenL_numBER(DD)] [Time Attributes TBD]
| [Test Score] | |unIT_PRICE_FACT
™ |Rrating | piscounT FacT] ci STORE
| [Credit History Score] | |QUANTITY_FACT 7 [StoreKey)
|| [Customer Account Status] f— |REVENLE FACT [Store Attributes TBD]

Weight j

L. Date
*Prellm_lnary Facts : 7 |Dateld
(To be iteratively formalized [Date Attributes TED] TBD=To be Determined

in the ‘Identify Facts’ Phase)

BILL_NUMBER (DD) = Degenerate Dimension

Figure 5-17 Customer dimension

Note: You must avoid null keys in the fact table. A good design includes a row
(Not applicable) in the corresponding dimension table to identify that the
dimension is not applicable to the measurement.

» Product dimension: The product dimension, shown in Figure 5-18 on
page 152, holds information related to products selling in the stores. It
consists of the following hierarchy: Category — Brand — Product.

Chapter 5. Dimensional Model Design Life Cycle 151

SUPPLIER
¢ | SUPPLIERKEY ~
SUPPLIERID_Matural

[COMPAMY NAME] -

g STORE

Retail_Sales = o B storekey
PRODUCT Lger] PRODUCTKEY [Store Attributes TBD]
B | PRODUICTKEY __|empLovERKEY la——t
PRODUCTID_NATURAL | CUSTOMERKEY EMPLOYEE
PRODUCTNAME | SUPPLIERKEY 7 [EmMPLOVEEKEY ~
BRANDNAME ~paTED EMPLOYEEID_Natural
BRANDDESC —rvED REPORTS_TO_ID %
CATERGORYNAME ™ |sToRED o
CATEGORYDESC | BLL_MUMBERED)] CUSTOMER
| [UNIT PRICE FACT] | CUSTOMERKEY ™
| [DISCOUNT PRICE] CUSTOMERID_NATUR
] [QUAN-'TFY FACI—] COMP ANYNAME
— | [REVENUE FACT)
— TIME
F [Timeld
[Time Attributes TBD]
Date
:{e‘ Dateld
*Preliminary Facts [Date Attribuites TED] TBD=To be Determined

(To be iteratively formalized in

the ‘Identify Facts’ Phase) BILL_NUMBER (DD) = Degenerate Dimension

Figure 5-18 Product dimension

» Store Dimension: The store dimension holds information related to stores.
This table is depicted in Figure 5-19 on page 153.

152 Dimensional Modeling: In a Business Intelligence Environment

SUPPLIER
7 | SUPPLIERKEY ~
SUPPLIERID Natural EMPLOYEE
[COMPANY NAME] 7 [EMPLOYEEKEY ~
- . ™ :‘EMPLOYEEID_NaturaI
a nenenTe om0
Retall_Sales CUSTOMER
PRODUCTKEY o]
" |emPLOYERKEY # | CUSTOMERKEY ~
STORE _|cusTomerkey CUSTOMERID_NATUR [,
7 | Storekey - SUPPLIERKEY S
[Store Mame] " |paATEID
[Store Location] |TIMEID TIME
[Store Area] I |STOREID 7 | Timeld)
[Store Region] || [B1LL_NUMBER (OD)] [Time Attributes TS0]
[Store State] —— | [UNIT PRICE FACT] =
[Store Country] ha [DISCOUNT FACT] Date
| [QuanTITY FACT] 7 |Dateld
| [REVENUE FACT] [Date Attributes TBO]
PRODUCT
7 [PRODUCTREY ~
PRODUCTID_NATLRA .
*Preliminary Facts «— 22On ICTAME TBD=To be Determined
(To be iteratively formalized in)| _NUMBER (DD) = Degenerate Dimension
the Identify Facts Phase)

Figure 5-19 Store dimension

» Date and time dimension: The date and time dimensions are explained in
detail in section “Date and time granularity” on page 155.

Identifying dimension hierarchies

A hierarchy is a cascaded series of many-to-one relationships. A hierarchy
basically consists of different levels, each corresponding to a dimension attribute.

In other words, a hierarchy is a specification of levels that represents
relationships between different attributes within a hierarchy. For example, one
possible hierarchy in the date dimension is Year — Quarter - Month — Day.

There are three major types of hierarchies that you should look for in each of the
dimensions. They are explained in Table 5-15 on page 154.

Chapter 5. Dimensional Model Design Life Cycle 153

154

Table 5-15 Different types of hierarchies

Seq. | Name Hierarchy description How is it implemented?

no.

1 Balanced In a balanced hierarchy, all the | See “How to implement a
dimension branches have the balanced hierarchy” on
same number of levels. For page 250.

more details, see “Balanced
hierarchy” on page 249.

2 Unbalanced | A hierarchy is unbalanced if it See “How to implement an
has dimension branches unbalanced hierarchy” on
containing varying numbers of page 252.

levels. Parent-child dimensions
support unbalanced
hierarchies. For more details,
see “Unbalanced hierarchy” on

page 251.
3 Ragged A ragged dimension contains at | See “How to implement a
least one member whose ragged hierarchy in

parent belongs to a hierarchy dimensions” on page 261.
that is more than one level
above the child. Ragged
dimensions, therefore, contain
branches with varying depths.
For more details, see “Ragged
hierarchy” on page 260.

Note: A dimension table may consist of multiple hierarchies. And, a
dimension table may consist of attributes or columns which belong to one,
more, or no hierarchies.

For the retail sales store example, Table 5-16 shows the hierarchies present
inside various dimensions.

Table 5-16 Dimensions and hierarchies

No | Name Hierarchy description Type

1 Date Calendar Hierarchy: Calendar Year — Calendar Balanced
Month — Calendar Week

Fiscal Hierarchy: Fiscal Year — Fiscal Quarter —
Fiscal Month — Fiscal Day

2 Time None

Dimensional Modeling: In a Business Intelligence Environment

No | Name Hierarchy description Type

3 Product Category Name — Brand Name — Product Name | Balanced

4 Employee | None

5 Supplier Supplier Country — Supplier Region — Supplier Balanced

City

6 Customer | Customer Country — Customer Region — Balanced
Customer City

7 Store Store Country — Store State — Store Region — Balanced
Store Area

We have a detailed discussion about handling hierarchies in 6.3.4, “Handling
dimension hierarchies” on page 248.

5.4.5 Date and time granularity

It is very important to identify the granularity of the date and time dimensions.
This is primarily because the date and time dimensions help determine the
granularity of the overall dimensional model and the level of information that is
stored in it. Choosing a wrong grain in either the date or time dimension may
result in important dimensions being omitted from the dimensional model. For
example, if we are designing a dimensional model for an order management
system and we choose the grain of the date dimension as quarter, we may miss
many other dimensions (such as time and employee) that could be included in
the model had the date dimension been at the day grain. We explain the date
and time dimensions in detail below:

Date dimension

Every data mart has a date dimension because all dimensional models are
based on a time series of operations. For example, you typically want to measure
performance of the business over a time period. It is also possible that a
dimensional model consists of several date dimensions. Such dimensions are
usually deployed using a concept called role-playing, which is implemented by
views. Role-playing is discussed in detail in section 6.3.9, “Role-playing
dimensions” on page 285.

For the retail sales grocery store example, the date dimension is shown
Figure 5-20 on page 156. The grain of the date dimension is a single day.

Chapter 5. Dimensional Model Design Life Cycle 155

PRODUCT

&

S|t d Jemeovee |
| |[Date] Retail_Sales i

| | [Date Description] | |PRODUCTKEY

| [calendar Month] | |cusTomeRkeY

| [calendar Quarter] || SUPPLIERKEY

| [calendar Year] __|DATEID
| [Fiscal Week] | mmED o =

| [Fiscal Month] | |sToRem

| [Fiscal Quarter] | BILL_MUMBER(DD)] == ’"
| [Fiscal Year] | [UNIT PRICE FACT]

| [Hoiiday Flag] || [DiscounT FacT] |

| weekeay Fiag] | louanTITY FaCT]
|| weekend Fiag] - | REVENUE FACT]

H SE:aazzgal Event] TBD=To be Determined

BILL_NUMBER (DD) = Degenerate Dimension
*Preliminary Facts

(To be iteratively formalized in
the Identify Facts Phase)

Figure 5-20 Date dimension

Note: The time dimension is handled separately from the date dimension. It is
not advised to merge the date and time dimension into one table because a
simple date dimension table which has 365 rows (for one year) would explode
into 365 (Days) x 24 (Hours) x 60 (Minutes) x 60 (Seconds) = 31536000 rows
if we tried storing hours, minutes, and seconds. This is for just one year.
Consider the size if it were merged with time.

Typically, the date dimension does not have an OLTP source system connected
to it. The date dimension can be built independently even before the actual
dimensional design has started. The best way to built a date dimension is to
identify all columns needed and then use SQL language to populate the date
dimension table for columns such as date, day, month, and year. For other
columns, such as holidays, with Christmas or Boxing Day, manual entries may
be required. The same is true for columns such as fiscal date, fiscal month, fiscal
quarter, and fiscal years. You may also use the spreadsheet to create the date
dimension.

The date dimension in Figure 5-20 consists of the normal calendar and fiscal
hierarchies. These hierarchies are shown in Figure 5-21 on page 157.

156 Dimensional Modeling: In a Business Intelligence Environment

Multiple

CaYIendar
. . ear
Hierarchies
Calendar
Quarter
Calendar
Month

Fiscal
Quarter

Attributes Attributes

\ Grain of Date Dimension \

Figure 5-21 Calendar and fiscal hierarchy in the date dimension

Handle date as a dimension or a fact?

Instead of using a separate date table, as shown in Figure 5-20 on page 156, we
could have used a date/time column in the fact table. In this way, we could have
removed the date table from our dimensional model. We could have used the
SQL date functions present inside each database to filter out the day, month, and
year as examples. But this design where we replace the date dimension with a
column inside the fact table has issues, for the following reasons:

» As shown in Figure 5-20 on page 156, there are several date attributes not
supported by the SQL date functions, including fiscal periods, holidays,
seasons, weekdays, weekends, and national events. This is one of the
primary reasons why we want to have a separate date dimension table. This
enables the business to look at the key performance indicators of their
business across various fiscal and other date-related attributes which are not
possible if we used the SQL date/time column inside the fact table.

» From an ease of use point of view, it is much easier to drag the columns from
a date table instead of using complex SQL functions to create the logic for the
reports.

Therefore, we think it is important to have a separate date dimension table
instead of using a simple date/time column field in the fact table.

Chapter 5. Dimensional Model Design Life Cycle 157

158

Insert a special date row for the “Not applicable” scenario

We discussed the Not applicable scenario in “Insert a special customer row for
the “Not applicable” scenario” on page 150 for the customer table. Similarly for
the date dimension, we insert a Not applicable row inside our date dimension
table. In the date dimension table, we include a Date unknown to store or Not
applicable or Corrupt row inside the date table and link the fact table row
(measurements) to this row when the date is unknown, or when the recorded
date is inapplicable, corrupted, or has not yet happened.

Recalling the grain for the retail sales grocery example, which is an individual
line item on a bill, the date dimension is surely going to have a date with each
product sold, and hence each fact table row is pointing to one valid row inside the
date dimension table.

How to handle several dates across International time zones
The topic of handling date and time across International times zones is

discussed in 6.3.3, “Handling date and time across international time zones” on
page 248.

Time dimension

The time dimension for our retail sales store example is shown in Figure 5-22.
Based on the requirements analysis performed in 5.2.7, “Requirements analysis”
on page 118, we designed the time dimension.

PRODUCT
=

T

Retail_Sales *
[y PRODUCTKEY
EMPLOYEEKEY
CUSTOMERKEY

TIME

G | Timeld
[Standard Time]
[Time of Day Description]

[Time of Day AM PM Indicator]

T

SUPPLIERKEY SUPPLIER
DATEID

=
STOREID
| BILL_NUMBER(DD)]
\— | [UNIT PRICE FACT] M
|| [pISCOUNT FACT]
[[QUANTITY FACT] e—
|| [REVENUE FACT]

*Preliminary Facts
(To be iteratively formalized BILL_NUMBER (DD) = Degenerate Dimension
in the Identify Facts Phase)

Figure 5-22 Time dimension

Sample rows for the time dimension are shown in Table 5-17 on page 159.

Dimensional Modeling: In a Business Intelligence Environment

Table 5-17 Sample rows from the time dimension

Time ID Standard time Description Time indicator
1 0600 hours Early morning AM
2 1650 hours Evening PM
3 2400 hours Late night AM

We recommend that time should be handled separately as a dimension and not
as a fact inside the fact table.

You can handle time in dimensional modeling in two ways:

» Time of day as a separate dimension

» Time of day as a fact

We discuss more about time handling in 6.3.2, “Handling time as a dimension or
a fact” on page 245.

5.4.6 Slowly changing dimensions

In this phase, we identify the slowly changing dimensions and also specify what
strategy (Type-1, Type-2, or Type-3) we use to handle the change.

What are slowly changing dimensions?

A slowly changing dimension is a dimension whose attributes for a record (row)
change slowly over time.

Assume that David is a customer of an insurance company called INS993, Inc.,
and first lived in Albany, New York. So, the original entry in the customer
dimension table had the record as shown in Table 5-18:

Table 5-18 Insurance customer dimension table

Customer key Social security number Name State

953276 989898988 David New York

David moved to San Jose, California, in August, 2005. How should INS993, Inc.
now modify the customer dimension table to reflect this change? This is the
Slowly Changing Dimension problem.

There are typically three ways to solve this type of problem, and they are
categorized as follows:

Chapter 5. Dimensional Model Design Life Cycle 159

» Type 1: The new row replaces the original record. No trace of the old record
exists. This is shown in Table 5-19. There is no history maintained for the fact
that David lived in New York.

Table 5-19 Type 1 change in customer dimension table

Customer key Social security number Name State
(Surrogate key)

953276 989898988 David California

» Type 2: A new row is added into the customer dimension table. Therefore,
the customer is treated essentially as two people and both the original and
the new row will be present. The new row gets its own primary key (surrogate
key). After David moves from New York to California, we add a new row as
shown in Table 5-20.

Table 5-20 Type 2 change in customer dimension table

Customer key Social security number Name State
(Surrogate key)

953276 989898988 David New York
953277 989898988 David California

» Type 3: The original record is modified to reflect the change. Also a new
column is added to record the previous value prior to the change.

To accommodate Type 3 slowly changing dimension, we now have the
following columns:

— Customer key
— Customer name
— Original State
— Current State
— Effective Date

After David moved from New York to California, the original information gets
updated, and we have the following table (assuming the effective date of
change is August 15, 2005):

Table 5-21 Type 3 change in customer dimension table

Customer | Social Customer | Original Current Effective
key security name state state date
number
953276 989898988 | David New York California August 15,
2005

160 Dimensional Modeling: In a Business Intelligence Environment

Why do we need to handle changes in data?

We need to specify how to handle changes in data. For example, what happens
if a customer address or name changes? Do we overwrite this change or does
the business need to see each change. Such decisions cannot be made by the
dimensional modeler. It is critical to involve the business users to identify how the
they would like to see the changes that happen in various business entities.

Activities for slowly changing dimensions

In this phase, we need to identify slowly changing dimensions for the
dimensional model designed in Figure 5-23. In addition, we also need to identify
how we would handle the slowly changing dimensions and the strategy we would

use.

| PRODUCT

|<)_u:|

| STORE

| Date

| SUPPLIER

Retail_Sales
PRODUCTKEY
EMPLOYEEKEY
CUSTOMERKEY
SUPPLIERKEY
DATEID

TIMEID

STOREID
[BILL_NUMBER(DD)]
[UNIT PRICE FACT]
[DISCOUNT FACT]
[[QUANTITY FACT]
[REVENUE FACT]

EMPLOYEE |

TIME |

| 1]

CUSTOMER |

CLLTTITTIIT]

T

*Preliminary Facts
(To be iteratively formalized
in the Identify Facts Phase)

BILL_NUMBER (DD) = Degenerate Dimension

Figure 5-23 Identifying slowly changing dimensions

In Table 5-22, we identify the slowly changing dimensions for our retail sales
store star schema, as shown in Figure 5-23.

Table 5-22 Slowly changing dimensions identified for retail sales example

Name Strategy used Structure changed?

Product Type-2 No, only new rows added for each change.

Employee Type-3 Yes, to show current and previous manager.
Current Manager and Previous Manager
columns added.

Supplier Type-1 No, only current rows are updated for each
change. No history maintained.

Time Not applicable

Chapter 5. Dimensional Model Design Life Cycle

161

Name Strategy used Structure changed?

Date Not applicable

Store Type-1 No, only current rows are updated for each
change. No history maintained.

Customer Yes, using Fast Changing Dimension

strategy discussed in 5.4.7, “Fast changing
dimensions” on page 162.

5.4.7 Fast changing dimensions

In this phase, we identify the fast changing dimensions that cannot be handled
using the Type-1, Type-2, or Type-3 approaches used for slowly changing
dimensions. For our retail sales grocery store example, we show how to handle
this fast changing customer dimension.

All other dimensions are handled using the Type-1, Type-2, and Type-3
approach as shown in Table 5-22 on page 161.

What are fast changing dimensions?

Fast changing dimensions are also called rapidly changing dimensions. In 5.4.6,
“Slowly changing dimensions” on page 159, we focused on the typically rather
slow changes to our dimension tables. The next question is what happens when
the rate of change in these slowly changing dimensions speeds up? If a
dimension attribute changes very quickly on a daily, weekly, or monthly basis,
then we are no longer dealing with a slowly changing dimension that can be
handled by using the Type-1, Type-2, or Type-3 approach.

The best approach for handling very fast changing dimensions is to separate the
fast changing attributes into one or more separate dimensions which are called
mini-dimensions. The fact table then has two or more foreign keys—one for the
primary dimension table and another for the one or more mini-dimensions
(consisting of fast changing attributes). The primary dimension table and all its
mini-dimensions are associated with one another every time we insert a row in
the fact table.

Activities for the “Identify fast changing dimensions” phase
To handle fast changing dimensions, here are the activities:

» All dimensions are analyzed to find which dimensions change very fast.
» Assume that the Customer Dimension is a fast changing dimension.

» The Customer dimension is analyzed further to understand the impact on the
size of the dimension table if the change is handled using the Type-2

162 Dimensional Modeling: In a Business Intelligence Environment

approach. If the impact on the size of the dimension table would be huge,
then the Type-2 approach is avoided.

Note: The Type-1 approach does not store history, so it is certainly not used
to handle fast changing dimensions. The Type-3 approach is also not used
because it allows us to see new and historical fact data by either the new or
prior attribute values. However, it is inappropriate if you want to track the
impact of numerous intermediate attribute values, which would be the case for
a fast changing dimension.

» The next step is to analyze the fast changing Customer dimension in detail to
identify which attributes of this dimension are subject to change fast. Assume
that we identify seven fast changing attributes in the Customer dimension, as
shown in Figure 5-24 on page 164. They are age, income, test score, rating,
credit history score, customer account status, and weight. Such fast changing
attributes are then separated into one new dimension
(Customer_Mini_Dimension) table, whose primary key is attached to the fact
table as a foreign key. This is also shown in Figure 5-24 on page 164.

» After having identified the constantly changing attributes and putting them in
the Customer_Mini_Dimension mini-dimension table, the next step is to
convert these identified attributes individually into band ranges. The concept
behind this exercise is to force these attributes to take limited, discreet
values. For example, assume that each of the above seven attributes takes
on 10 different values. Then, the Customer_Mini_Dimension will have 1
million values. Thus, by creating a mini-dimension table consisting of
band-range values, we have avoided the problem where the attributes such
as age, income, test score, rating, credit history score, customer account
status, and weight can no longer change. These attributes cannot change
because they have a fixed set of band-range values (see Table 6-18 on
page 272) instead of having a large number of values.

Chapter 5. Dimensional Model Design Life Cycle 163

Dimension

(a) Before

Retail_Sales * = cuSTOMER
PRODUCTKEY 7 | cusTomERKEY
EMPLOYEEKEY || CUSTOMERID_NATURAL
CUSTOMERKEY | companyNAME
SUPPLIERKEY | conTacTNaME
DATEID " |ADDRESS
TIMEID ey
STOREID | More, 1
[BILL_NUMBER (D] Age
[Facts....] }L Income

T [Test Scare]
T Rating
Fast Changing : [Credit History Score]
A A [Customer Account Status]
Attributes in a | Weight
Fast Changing

CUSTOMER
| CUSTOMERKEY
CUSTOMERID_MATURAL
COMPANYNAME
CONTACTNAME
ADDRESS

CUSTOMER_MINI_DIMENSION
¥ [CUSTOMER_MINI_DIMENSION_KEY
Age
Income
[Test Score]
Rating
[Credit History Score]
[Customer Account Status]
Weight

Retail_Sales
PRODUCTKEY
EMPLOYEEKEY
CUSTOMERKEY
CUSTOMER._MINI_DIMENSION_KEY
SUPPLIERKEY
DATEID
TIMEID
STOREID

— Mini-Dimension

Figure 5-24 Handling a fast changing dimension

Therefore, we have two dimension tables:

a. One table is the primary original fast changing dimension minus the fast
changing attributes. This is the Customer table as shown in Figure 5-24.

b. The second table consists of the fast changing attributes which are
typically in the mini-dimension. This table is the
Customer_Mini_Dimension as shown in Figure 5-24.

Note: It is possible that a very fast changing dimension table may be split into

one or more mini-dimensions.

The following topics about fast changing dimensions are discussed in more detail

in 6.3.6, “Handling fast changing dimensions” on page 269:

>

>

>

Fast changing dimensions with a real-time example.

Mini-dimensions and band range values.

Fast changing dimensions, resolving issues with band ranges, and

Mini-dimensions.

Snowflaking does not resolve the fast changing dimension problem.

After completing this activity (/dentify Fast Changing Dimensions), we get the
schema as shown in Figure 5-25 on page 165.

164 Dimensional Modeling: In a Business Intelligence Environment

| PRODUCT

| STORE

| CUSTOMER

| CUSTOMER_MINI_DIMENSION

|@_AII
|cGI_AII
|cGI_AII
|@_AII

Retail_Sales
PRODUCTKEY
EMPLOYEEKEY
CUSTOMERKEY
SUPPLIERKEY
DATEID

TIMEID

STOREID
CUSTOMER _MINI_DIMENSION_KEY
[BILL_NUMBER(DD)]
[UNIT PRICE FACT]
[DISCOUNT FACT]
[[QUANTITY FACT]
[REVENLUE FACT]

[LITITIITIT]

*Preliminary Facts ‘i

Date

SUPPLIER

| 1]

EMPLOYEE

TIME

|

(To be iteratively formalize:
in the Identify Facts Phase)

BILL_NUMBER (DD)=Degenerate Dimension

Figure 5-25 Retail sales grocery store star schema

5.4.8 Cases for snowflaking

Further normalization and expansion of the dimension tables in a star schema
result in the implementation of a snowflake design. A dimension table is said to
be snowflaked when the low-cardinality attributes in the dimension have been
removed to separate normalized tables and these normalized tables are then
joined back into the original dimension table.

Typically, we do not recommend snowflaking in the dimensional model

environment because it can impact understandability of the dimensional model

and can result in decreased performance because a higher number of tables

need to be joined.

For each dimension selected for the dimensional model, we need to identify

which should be snowflaked. There are no candidates identified for snowflakes in
the grocery store example.

The following topics on snowflaking are discussed in more detail in 6.3.7,

“Identifying dimensions that need to be snowflaked” on page 277:

vyvyyvyyvyy

What is Snowflaking?
When do you do snowflaking?
When to avoid snowflaking?

Under what conditions will snowflaking improve performance?
Disadvantages of snowflaking.

Chapter 5. Dimensional Model Design Life Cycle

165

5.4.9 Other dimensional challenges

In this phase, we identify other special types of dimensions, as shown in
Table 5-28.

166

Table 5-23 Other special dimensions

Seq
no.

Type

How it is implemented

1

Multi-valued
dimension

Description

Typically while designing a dimensional model, each
dimension attribute should take on a single value in the
context of each measurement inside the fact table.
However, there are situations where we need to attach a
multi-valued dimension table to the fact table, because
there may be more than one value of a dimension for each
measurement. Such cases are handled using
Multi-valued dimensions.

Implementation

Multi-valued dimensions are implemented using Bridge
tables. For a detailed discussion, refer to 6.3.10,
“Multi-valued dimensions” on page 288.

Role-playing
dimension

Description

A single dimension that is expressed differently in a fact
table using views is called a role-playing dimension. A
date dimension is typically implemented using the
role-playing concept when designing a dimensional
model using an Accumulating snapshot fact table. This is
discussed in more detail in Chapter 6, “Modeling
considerations” on page 209 and “Accumulating fact
table” on page 233.

Implementation

The role-playing dimensions are implemented using
views. This procedure is explained in detail in 6.3.9,
“Role-playing dimensions” on page 285.

Dimensional Modeling: In a Business Intelligence Environment

Seq Type How it is implemented
no.

3 Heterogeneous Description

dimension The concept of heterogeneous products comes to life
when you design a dimensional model for a company that
sells heterogeneous products with different attributes, to
the same customers. Thatis, the heterogeneous products
have separate unique attributes and it is therefore not
possible to make a single product table to handle these
heterogeneous products.

Implementation
Heterogeneous dimensions can be implemented in
following ways:

» Merge all the attributes into a single product table
and all facts relating to the different heterogeneous
attributes in one fact table.

» Create separate dimensions and fact tables for the
different heterogeneous products.

» Create a generic design to include a single fact and
single product dimension table with common
attributes from two or more heterogeneous products.

Implementing heterogeneous dimensions is discussed in
more detail in 6.3.12, “Heterogeneous products” on
page 292.

4 Garbage Description

dimension A garbage dimension is a dimension that consists of
low-cardinality columns such as codes, indicators, status,
and flags. The garbage dimension is also referred to as a
junk dimension. Attributes in a garbage dimension are not
related to any hierarchy.

Implementation

The implementation of the garbage dimension involves
separating the low-cardinality attributes and creating a
dimension for such attributes. This implementation
procedure is discussed in detail in 6.3.8, “Identifying
garbage dimensions” on page 282.

Chapter 5. Dimensional Model Design Life Cycle 167

Seq
no.

Type

How it is implemented

Hot swappable
dimension

Description

A dimension that has multiple alternate versions that can
be swapped at query time is called a Hot Swappable
dimension or Profile table. Each of the versions of the hot
swappable dimension can be of a different structure. The
alternate versions of the hot swappable dimensions
access the same fact table but get different output. The
different versions of the primary dimension may be
completely different, including incompatible attribute
names and different hierarchies.

Implementation

The procedure to implement Hot swappable dimensions
is discussed in detail in 6.3.13, “Hot swappable
dimensions or profile tables” on page 294.

For the retail sales grocery store example, we do not have any of the special

dimensions shown in Table 5-23 on page 166. However, we recommend that you

refer to Chapter 6, “Modeling considerations” on page 209 to understand how
these special dimensions are designed and implemented.

The dimensional model designed for the retail sales grocery business process to

the end of the Identify the dimensions phase is shown in Figure 5-26.

| PRODUCT
| STORE
| CUSTOMER

| CUSTOMER_MINI_DIMENSION

*Preliminary Facts ‘i

(To be iteratively formalize

in the Identify Facts Phase)

Retail_Sales
PRODUCTKEY
EMPLOYEEKEY
CUSTOMERKEY
SUPPLIERKEY
DATEID

TIMEID

STOREID
CUSTOMER _MINI_DIMENSION_KEY
[BILL_NUMBER(DD)]
[UNIT PRICE FACT]
[DISCOUNT FACT]
[[QUANTITY FACT]
[REVENLUE FACT]

Date |

SUPPLIER |

| 1]

EMPLOYEE |

TIME |

|

CLLLCLTTIIIIT]

BILL_NUMBER (DD)=Degenerate Dimension

Figure 5-26 Retail sales grocery business process (dimensional model)

The model designed to this point consists of the dimensions and preliminary

facts. These preliminary facts are high level facts identified in section 5.3.5, “High

level dimensions and facts from grain” on page 131. We iteratively identify
additional facts in the next phase, 5.5, “Identify the facts” on page 169.

168

Dimensional Modeling: In a Business Intelligence Environment

5.5 Identify the facts

In this phase, we focus on the fourth step of the DMDL, as shown in Figure 5-27.

Requirements

Grain

Identify Model Components

Document/Study
Enterprise Business
Processes

Identify Fact Table
Granularity

Dimensions Facts
Determine All X
o A [Identify Facts |

Identify Degenerate and

Select Business
Process to Model

Identify Multiple
Separate Grains

F

for a Single

Identify High level

Business Process

Conformed Dimensions

—

Identify Conformed
Facts

Identify Dimensional
Attributes (Granularity)
and Attribute Hierarchies

Entities and
Measures for
Conformance Identify the Fact
Table Types
Identify Data (Transaction,
Sources Periodic, and

Accumulating)

Select Requirements
Gathering Approach
(Source Driven
Or
User Driven)

Identify Date and Time
Granularity

Identify Slowly Changing
Dimensions

Identify Fact types
(Additive, Semi Additive,
Non-Additive, Derived,
Textual, Pseudo, or
Fact-less Facts) and
Default Aggregate Rules

Identify Fast Changing
Dimensions

Grain Definition Report
¥

Requirement Gathering Repo
¥

» Check Grain for
Atomicity

| Year-to-date Facts |

Identify cases for
Snowflaking

Requirements
Gathering

| Event Fact Tables |

Identify preliminary
candidates for

dimensions and

Requirements
Analysis

facts from the grain

Dimensional Challenges
(Multi-valued, Garbage,
Heterogeneous, Hot
Swappable,

Roleplaying)

| Composite Key Design |

Fact Table
Sizing and Growth

Y= = kb =

Iterate L = &= L

Verify Design with User Requirements

-

Physical Design Considerations
(Indexing, Partitioning and Aggregation)

ﬂ

Metadata Management

Figure 5-27 Dimensional Model Design Life Cycle

To recall, we identified preliminary dimensions and preliminary facts (for the retail
sales grocery business process) in section 5.3.5, “High level dimensions and

facts from grain” on page 131. We used the grain definition, as shown in

Figure 5-28 on page 171, to quickly arrive at high level preliminary dimensions
and facts. In this phase, we iteratively, and in more detail, identify facts that are

true to this grain.

Table 5-24 on page 170 shows the activities that are associated with the Identify

the facts phase.

Chapter 5. Dimensional Model Design Life Cycle 169

Table 5-24 Activities in the Identify the facts phase

Activity name Activity description

Identify facts This activity identifies the facts that are true to the grain
identified in 5.3, “Identify the grain” on page 121.

Identify conformed After we identify the facts, we determine whether any of

facts these facts are conformed. If they are, we use those

conformed facts.

Identify fact types In this activity we identify the fact types, such as:
- Additive facts

- Semi-Additive facts

- Non-Additive facts

- Derived facts

- Textual facts

- Pseudo facts

- Factless facts

Year-to-date facts Year-to-date facts are numeric values that consist of an
aggregated total from the start of year to the current date.
Here we verify that such facts are not included in a fact table
with the atomic level line items.

Event fact tables Here we describe how to handle events in the event-based
fact table. We also highlight the pseudo and factless facts
that may be associated with such tables.

Composite key design We discuss general guidelines for designing the primary
composite key of the fact table. We also describe situations
when a degenerate dimension may be included inside the
fact table composite primary key.

Fact table sizing and Guidelines are described for use by the DBA to predict fact
growth table growth.

Figure 5-28 on page 171 shows the high level dimensions and preliminary facts
identified from the grain definition.

170 Dimensional Modeling: In a Business Intelligence Environment

Time Customer Employee

'\ V' '

Preliminary Facts are:
= = = 1) Unit Sales Price
Grain= 1 Line Item on a Grocery Bill q:> 2) Quantity Sold

- = = 3) Total $ Amount
4) Discount

A 4 A\ 4 A 4
Bill Number Date Supplier

Figure 5-28 Identifying high level dimensions and facts from the grain

5.5.1 Facts

In this activity, we identify all the facts that are true to the grain. These facts
include the following:

» We identified the preliminary facts in section “High level dimensions and facts
from grain” on page 131. Preliminary facts are easily identified by looking at
the grain definition or the grocery bill.

» Other detailed facts which are easily identified by looking at the grain
definition as shown in Figure 5-28. For example, detailed facts such as cost
per individual product, manufacturing labor cost per product, and
transportation cost per individual product, are not preliminary facts. These
facts can only be identified by a detailed analysis of the source E/R model to
identify all the line item level facts (facts that are true at the line item grain).

For the retail sales grocery store example, we identify the facts that are true to
the grain, as shown in Table 5-25. We found other detailed facts, such as cost per
item, storage cost per item, and labor cost per item, that are available in the
source E/R model.

Table 5-25 Facts identified for the retail sales business process

Facts Fact description

Unit sales price Price of a single product.

Quantity sold Quantity of each individual product that is sold.
Amount Defined as (Unit sales price) X (Quantity sold).
Discount Discount given on a single product.

Cost per item Cost of a single product.

Chapter 5. Dimensional Model Design Life Cycle 171

172

Facts

Fact description

Total cost

Defined as (Cost per item) X (Quantity sold).

Storage cost

Storage cost per product.

Labor cost

Labor cost per product.

Note: It is important that all facts are true to the grain. To improve
performance, dimensional modelers may also include year-to-date facts inside
the fact table. However, year-to-date facts are non-additive and may result in
facts being counted (incorrectly) several times when more than a single date is
involved. We discuss this in more detail in 5.5.4, “Year-to-date facts” on

page 176.

How to identify facts or fact tables from an E/R model

We identified the facts as shown in Table 5-25 on page 171. The process of
identifying these facts involved use of the E/R model for the Retail Sales
Business process, as shown in Figure 5-29 on page 173.

Dimensional Modeling: In a Business Intelligence Environment

Department Suppliers
% |Emp_pepartment_ID ? gtss:::?[_)rype o #|F=%7 gupplier_Type
S N T eiabiibui Suppler e - el
i EmployeelD T [Department Description] Supplier_Lacation_Manager Suﬁﬁher_DYeZUipﬁon
___|Emp_Department_ID — [Department Head] Supplier_Region w —
— Manager_ID B Department_Start_Date
| |Lasthame = a E_Gw Brand
FirstMame
I itle Products % [Brand_ID
| rite0fCourtesy =" Store_BILLING Store_Billing_Details [Productn ~ __|arand_Description
| pae orarng I NUMBER lpereol| % | BILL_NUMEER o] |Productiame __|category_D
| HireDate ™| Customer_D % | ProductId | supplierD g
" |Employes_ID Unm:'n.ce : CategoryID
| store_Biling_Date ?;i;l"zmunt] || tProduct Code] Categories
o - ruy| | Store Biling_ Time Diccaut | [Product VGA] | 7 |CategoryD
|| store_Start_Date ___|[Product Country] CategaryName
% |Store_ID Store ID [Storage Cost Per Item] [Product Record] = [———
| |5tore_Code — = [Cost Price Per Item] | [Product BNA] 1 pictu P
| |Store_Name j [Labor Cost Per Ttem] " |BrandID S
| |store_Region_ID T | More.] "
Store_Type — Pach
Customers ‘IL | #|Package_ID
@ [Customerd =" Region __|Packege_Type
| customer_Type 1D % | RegionID |__|Package_Description
L | Customer_RegionID :‘ Customer_Region_Descrif I R—
Store_Region Customer_Shopper_II Territories
‘2 | Store_Region_ID | customer_Full_ame % | TerritoryID ~
Store_Region_Name | customer_First_Mame Customer_Type :‘ Customer_Territory_Descripti
Store_County : Customer_Last_MName % | customer_Type_ID RegionID i
Store_State Address Customer_Type
L City j Customer_Type_Descripti
Region W

Figure 5-29 E/R Model for the retail sales business process

The following are the steps to convert an E/R model to a dimensional model:

1.
2.
3.
4.

Identify the business process from the E/R Model.
Identify many-to-many tables in E/R model to convert to fact tables.
Denormalize remaining tables into flat dimension tables.
Identify date and time from the E/R Model.

This process of converting an existing E/R model (which can be a Data
Warehouse or an OLTP source system) is explained in detail in 6.1, “Converting

an E/R model to a dimensional mode

|”

on page 210.

The final dimensional model, after having identified the facts (shown in

Table 5-25 on page 171), is depicted in Figure 5-30 on page 174.

Chapter 5. Dimensional Model Design Life Cycle

173

|T.[ME |@—m
| Date |@_m
|@_m

| EMPLOYEE

| CUSTOMER_MINI_DIMENSION |@—‘I‘

Re

tail_Sales

PRODUCTKEY
EMPLOYEEKEY
CUSTOMERKEY
SUPPLIERKEY

DATEID

TIMEID

STOREID
CUSTOMER_MINI_DIMENSION_KEY
[BILL_NUMEER(DD)]

[UNIT PRICE]

DISCOUNT

QUANTITY

[TOTAL AMOUNT]

[COST FRICE PER ITEM]
[COST PRICE AMOUNT]
[STORAGE COST PER ITEM]
[LABOR COST PER ITEM]

‘I‘—‘37| PRODUCT

l:':‘—‘3°| SUPPLIER

‘I‘—‘33| CUSTOMER

m_&| STORE

Figure 5-30 Retail sales dimensional model

5.5.2 Conformed facts

A conformed fact is a shared fact that is designed to be used in the same way
across multiple data marts. So, the shared conformed facts mean the same thing

to different star schemas.

Once the facts have been identified, we must determine whether some of these
facts already exist inside the data warehouse or in some other data marts. If any
do, then ideally we should use these predefined (and hopefully well-tested) facts.

We can assume that for our retail sales business process, there are no

conformed facts.

5.5.3 Fact types

The facts inside the fact table could be of several different types, some of which

are described in Table 5-26 on page 175.

174 Dimensional Modeling: In a Business Intelligence Environment

Table 5-26 Fact types

Fact type Description

Additive facts Additive facts are facts that can be added across all of the
dimensions in the fact table, and are the most common type of fact.
Additive facts may also be called fully additive facts. They are
identified here because these facts would be used across several
dimensions for summation purposes.

It is important to understand that since dimensional modeling
involves hierarchies in dimensions, aggregation of information over
different members in the hierarchy is a key element in the
usefulness of the model. Since aggregation is an additive process, it
is good if we have additive facts.

Semi-additive These are facts that can be added across some dimensions but not
facts all. They are also sometimes referred to as partially-additive facts.
For example, facts such as head counts and quantity-on-hand
(inventory) are considered semi-additive.

Non-additive Facts that cannot be added for any of the dimensions. That is, they
facts cannot be logically added between records or fact rows.
Non-additive facts are usually the result of ratios or other
mathematical calculations. The only calculation that can be made
for such a fact is to get a count of the number of rows of such facts.

Table 5-27 shows examples of non-additive facts, and we discuss
the process of handling non-additive facts in 6.4.1, “Non-additive
facts” on page 297.

Derived facts Derived facts are created by performing a mathematical calculation
on a number of other facts, and are sometimes referred to as
calculated facts. Derived facts may or may not be stored inside the
fact table.

Textual facts A textual fact consists of one or more characters (codes). They
should be strictly avoided in the fact table. Textual codes such as
flags and indicators should be stored in dimension tables so they
can be included in queries. Textual facts are non-additive, but could
be used for counting.

Pseudo fact When summed, a pseudo fact gives no valid result. They typically
result when you design event-based fact tables. For more detail,
see 6.4.4, “Handling event-based fact tables” on page 311.

Factless fact A fact table with only foreign keys and no facts is called a factless
fact table. For more detail, see 6.4.4, “Handling event-based fact
tables” on page 311.

Chapter 5. Dimensional Model Design Life Cycle 175

Note: Each fact in a fact table should have a default aggregation (or
derivation) rule. Each fact in the fact table should be able to be subjected to
any of the following: Sum (Additive), Min, Max, Non-additive, Semi-additive,
Textual, and Pseudo.

Table 5-27 shows the different facts and their types for the retail sales business
process. They are all true to the grain.

Table 5-27 Facts identified for the retail sales business process

Facts Fact description Type of fact | Formula

Unit sales Sales price of a single product Non-additive

price

Quantity sold | Quantity of each item sold Additive

Amount Total sales Additive (unit sales price) X
(quantity sold)

Discount Discount on each item Non-additive

ltem cost Cost of a single item Non-additive

Total cost Cost of all items Additive (cost per item) X
(quantity sold)

Storage cost | Storage cost per item Non-additive

Labor cost Labor cost per item Non-additive

Note: A fact is said to be derived if the fact can be calculated from other facts
that exist in the table, or that have been also derived. You may decide not to
include the derived facts inside the fact table and calculate these derived facts
in a reporting application.

5.5.4 Year-to-date facts

The period beginning at the start of the calendar year to the current date is called
year-to-date. For a calendar year where the starting day of the year is January 1,
the year-to-date definition is a period of time starting from January 1 to the
specified date.

Year-to-Date facts are numeric totals that consist of an aggregated total from the
start of a year to the current date. For example, assume that a fact table stores
sales data for the year 2005. The sales for each month are additive and can be

176 Dimensional Modeling: In a Business Intelligence Environment

summed to produce year-to-date totals. If you create a Year-to-Date fact such as
Sales_3_Year_To_Date, then when you query this fact in August 2005, you
would get the sum of all sales to August 2005.

Dimensional modelers may include aggregated year-to-date facts inside the fact
table to improve performance and also reduce complexities in forming
year-to-date queries. However, to avoid confusion it is typically preferred for such
facts to be calculated in the report application.

Suggested approaches for handling year-to-date facts are as follows:

» OLAP-based applications
» SQL functions in views or stored procedures

For our retail sales business process dimensional, we do not store any
year-to-date facts.

5.5.5 Event fact tables

Event fact tables are used to record events, such as Web page clicks and
employee or student attendance. Events do not always result in facts. So, if we
are interested in handling event-based scenarios where there are no facts, we
use event fact tables that consists of either pseudo facts or factless facts. We
explain event fact tables in more detail in 6.4.4, “Handling event-based fact
tables” on page 311.

We discuss the topic of event-based fact tables in the Identify the facts phase to
alert the reader to the considerations associated with an event-based fact table.
Some of these considerations are:

» Event-based fact tables typically have pseudo facts or no facts at all.

» Pseudo facts can be helpful in counting.

» The factless fact event table has only foreign keys and no facts. The foreign
keys can be used for counting purposes.

Based on the current requirements, our retail sales business process
dimensional model has no event-based fact table.

5.5.6 Composite key design

A fact table primary key typically is comprised of multiple foreign keys, one from
each dimension table. Such a key is called a composite, or concatenated,
primary key. However, it is not mandatory to have all the foreign keys included in
the primary key.

Chapter 5. Dimensional Model Design Life Cycle 177

Also, the combination of all foreign keys of the dimensions in the fact table will
not always guarantee uniqueness. In such situations, you may need to include a
degenerate dimension as a component in the primary key. It is mandatory that a
primary key is unique.

To determine whether a degenerate dimension needs to be included in the fact
table primary key to guarantee uniqueness, consider the dimensional model
depicted in Figure 5-31.

Retail_sales
| |PRODUCTKEY

TIME =3 EMPLOYEEKEY _
|roear
|suerLiERKEY

Date =3 __|patEn
o
| |sTorem

EMPLOYEE & CUSTOMER_MINI_DIMENSION_KEY |
|| unrT PRICE]

| CUSTOMER_MINI_DIMENSION |ﬂ—‘x‘ | quanTTTy

| [TOTAL AMOUNT]
| [cosT PRICE PER TTEM]
|| [COST PRICE AMOUNT]
|| [STORAGE COST PER ITEM]
|| 1LaBOR COST PER ITEM]

Grain Definition- A Single Line Item on a Grocery Bill (Receipt)

Figure 5-31 Retail sales grocery store business process

The grain definition of this schema is a single line item on a grocery bill. The date
dimension stores data at the day level and the time dimension stores the data at
the hourly level. In order to build the primary key for this fact table, assume that
we create the composite primary key of the fact table consisting of only the
foreign keys of all the dimension. Assume that the following two sales occur:

1. On October 22, 2005, Time: 8:00AM, customer C1 buys product P1 from
store S1, product P1 was supplied by supplier S1, the employee who sold the
product was E1. Customer C1 gets a bill with bill number equal to 787878.

2. On October 22, 2005, Time: 8:30AM, customer C1 buys product P1 from
store S1, product P1 was supplied by supplier S1, the employee who sold the
product was E1. Customer C1 gets a bill with bill number equal to 790051.

The above sales scenarios are represented in the fact table shown in Figure 5-32
on page 179. We observed that the UNIQUENESS of the fact table row is not
guaranteed if we choose the primary key as equal to all foreign keys of all the
dimensions. The uniqueness can only be guaranteed only if we include the
degenerate dimension (BILL_NUMBER). Of course, we correctly assume that for
every new purchase the same customer gets a new bill number.

178 Dimensional Modeling: In a Business Intelligence Environment

UNIQUENESS of the Composite Primary Key is not guaranteed

Product Employee | Customer | Supplier DatelD TimelD StorelD Customer | BILL_
Key Key Key Key Mini Dim | NUMBER

Key (DD)
Row 1— | P1 E1 c1 s1 D1 \ 3/\ s1 cM1 | 787878
Row 2—| P1 E1 C1 s1 D1 / @ N(s1 CM1 | 790051

- \ AN
X
[8:30AM | | 8:00AM

October 22, 2005 |

Both 8:00 AM and 8:30 AM are represented with
only 1 single time row (T1) because the Time
Dimension granularity is at each hour.

Figure 5-32 Composite fact table design

The composite key for our fact table consists of all the foreign dimension keys
and degenerate dimension (Bill_Number).

Note: Typically the fact table primary key consists of all foreign keys of the
dimensions. However, the uniqueness of the fact table primary key is not
always guaranteed this way. In some scenarios, you may need to include one
or more degenerate dimensions in the fact primary key to guarantee
uniqueness. On the contrary, in some situations, you may observe that the
primary key uniqueness could be guaranteed by including only some of the
many foreign keys (of the dimensions) present inside the fact table.

The guarantee of uniqueness of the primary key of the fact table is determined by
the grain definition for the fact table. However, a composite key that consists of
all dimension foreign keys is not guaranteed to be unique. We discussed one
such case as depicted in Figure 5-32. We discuss more about composite primary
key design in6.4.3, “Composite key design for fact table” on page 308.

5.5.7 Fact table sizing and growth

In this activity we estimate the fact table size and also predict its growth. There
are basically two ways to calculate the growth in fact table data. They are:

» Understanding the business: Assume that the retail sales business
generates a gross revenue of $100 million. Also assume that the average
price of a line item is $2. Then there would be ($100 million)/ ($2) = 50 million
line items generated per year, and 50 million rows inserted into the star

Chapter 5. Dimensional Model Design Life Cycle 179

schema for the retail sales business process. Recall that the grain for the
retail sales grocery business process was a single line item on a grocery bill.

» Technical perspective: The other way to calculate the exact size of fact
table growth is to calculate the size of the foreign keys, degenerate
dimensions, and facts. After we calculate the total size of the fact table
columns, we multiply it by the number of rows that could be possibly be
inserted assuming all permutations of all products that sell in all stores on all
days. We may also similarly calculate the growth of the fact table for a year.
For example, consider the star schema designed for the retail sales business
process. This is shown in Figure 5-33 on page 181. To calculate the
maximum possible size of the fact table, perform the following steps:

a. Calculate the approximate number of rows inside each of the dimensions,
assuming that the dimensions have following rows:

¢ Time dimension: 4 rows

¢ Date dimension: 365 rows for 1 year

¢ Product dimension: 100 rows (100 products in all)
¢ Store dimension: 2 rows (for 2 stores)

e Customer dimension: 1 million customers

e Customer_Mini_Dimension: 5 rows

e Supplier dimension: 50 suppliers

* Employee dimension: 10 employees

b. Calculate the base level of fact records by multiplying together the number
of rows for each dimension, calculated in the step above. For example:

e 4x365x100x 2 x 1 million x5 x50x 10 =730000000 rows or 730
million rows.

Of course this is a huge number of rows if every product was sold in every
store by every employee to every customer.

c. We calculate the maximum fact table size growth as follows:
¢ Number of foreign keys = 8
* Number of degenerate dimensions = 1
* Number of facts = 8
Assuming that the fact table takes 4 bytes for an integer column,
Total size of 1 row =(8+1+8) x 4 bytes= 68 bytes.
So, the maximum data growth for this dimensional model is:
730 million rows x 68 bytes (size of 1 row) = 45 GB

180 Dimensional Modeling: In a Business Intelligence Environment

Retail_Sales
PRODUCTKEY

|1'.[ME

EMPLOYEEKEY

CUSTOMERKEY
SUPPLIERKEY

| Date

DATEID

TIMEID
STOREID

| EMPLOYEE

|ﬂ—cl:|
|.ﬂ_m
|@_m

CUSTOMER_MINI_DIMENSION_KEY

[BILL_MUMBER.(DD)]
[UNIT PRICE]

| CUSTOMER_MINI_DIMENSION |@—‘I'

DISCOUNT
QUANTTTY

[TOTAL AMOUNT]

[COST PRICE PER ITEM]
[COST PRICE AMOUNT]
[STORAGE COST PER ITEM]
[LABOR COST PER ITEM]

‘I‘—&‘| PRODUCT

‘I‘—&‘| SUPPLIER

‘I‘—‘}“| CUSTOMER

“‘—&4 STORE

Figure 5-33 Retail sales business process dimensional model

This mathematical fact table growth calculation helps the DBA to calculate the
approximate and maximum growth of the fact table. This way the DBA can be

made aware of the possible growth of the dimensional model and consider

potential performance tuning measures.

5.6 Verify the model

The primary focus of this phase is to test the dimensional model to see if it meets
the business requirements. The dimensional model at this point would contain no
data. The testing occurs to see if the existing model can answer all questions

posed during the requirement gathering phase.

5.6.1 User verification against business requirements

Before we complete the dimensional design and pass it on to the ETL team to
begin the ETL design, we must verify the model against the business

requirements analyzed in 5.2.7, “Requirements analysis” on page 118.
Table 5-28 shows the results of the verification.

Table 5-28 Validate model against requirements

product in each category?

Q. Business requirement Meets?
no.
Q1 What is the average sales quantity this month for each Yes

Chapter 5. Dimensional Model Design Life Cycle

181

Q. Business requirement Meets?
no.

Q2 Who are the top 10 sales representatives and who are their | Yes
managers? What were their sales in the first and last fiscal
quarters for the products they sold?

Q3 Who are the bottom 20 sales representatives and who are Yes
their managers?

Q4 How much of each product did U.S. and European customers | Yes
order, by quarter, in 2005?

Q5 What are the top five products sold last month by total Yes
revenue? By quantity sold? By total cost? Who was the
supplier for each of these products?

Q6 Which products and brands have not sold in the last week? Yes
The last month?

Q7 Which salespersons had no sales recorded last month for Yes
each of the products in each of the top five revenue
generating countries?

Q8 What was the sales quantity of each of the top five selling Yes
products on Christmas, Thanksgiving, Easter, Valentine's
Day, and Fourth of July?

Q9 What are the sales comparisons of all products sold on Yes
weekdays compared to weekends? Also, what was the sales
comparison for all Saturdays and Sundays every month?

Q10 | What are the top 10 and bottom 10 selling products each day | Yes
and week? Also at what time of the day do these sell?
Assuming there are 5 broad time periods - Early morning
(2AM - 6AM), Morning (6AM - 12PM), Noon (12PM - 4PM),
Evening (4PM - 10PM) Late night Shift (10PM - 2AM)

At this point the dimensional modelers should have the report writers build
pseudo logic to answer questions Q1 to Q10 in Table 5-28 on page 181. This
process helps in the verification process from a report feasibility standpoint.
Then, if there are any missing attributes from the dimension tables, they can be
added.

In addition to validating the model against the requirements, also confirm
requirements for handling history. Questions that you may need to consider and
validate are shown in Table 5-29 on page 183. You also need to validate these
history preserving requirements against the dimensional model.

182 Dimensional Modeling: In a Business Intelligence Environment

Table 5-29 Questions relating to maintaining history

History requirement

Action

Employee changes from Region A to Region B?

Overwrite or maintain history

Employee changes Manager

Overwrite or maintain history

Product changes from Category A to Category B?

Overwrite or maintain history

More questions

Overwrite or maintain history

5.7 Physical design considerations

In this phase we focus on physical design considerations, as depicted in the
DMDL in Figure 5-34.

Identify Model Components

Requirements Grain Dimensions Facts
Document/Study Identify Fact Table Dl)e}tri:a?g;gn’z” | Identify Facts |
Enterprise Business Granularity
Processes Identify Degenerate and Identify Conformed

Select Business
Process to Model

]

Identify High level

Select Requirements
Gathering Approach
(Source Driven
Or
User Driven)

Requirement Gathering Repo
¥

Requirements
Gathering

Requirements
Analysis

Identify Multiple
Separate Grains
for a Single
Business Process

-

Accumulating)

Grain Definition Report
¥

Check Grain for
Atomicity

Identify preliminary
candidates for
dimensions and

facts from the grain

Conformed Dimensions

Facts

Identify Dimensional
Attributes (Granularity)

and Attribute Hierarchies

Entities and (Additive, Semi Additive,
Measures for Identify Date and Time Non-Additive, Derived,
Conformance Identify the Fact Granularity Textual, Pseudo, or

Table Types Fact-less Facts) and

Identify Data (Transaction, Identify Slowly Changing Default Aggregate Rules

Sources Periodic, and Dimensions

Identify Fact types

Identify Fast Changing
Dimensions

| Year-to-date Facts |

Identify cases for
Snowflaking

| Event Fact Tables |

Dimensional Challenges

(Multi-valued, Garbage,
Heterogeneous, Hot
Swappable,
Roleplaying)

| Composite Key Design |

Fact Table
Sizing and Growth

Verify Design with User Requirements

Physical Design Considerations
(Indexing, Partitioning and Aggregation)

ﬂ

L <= a= L = Iterate L a= <= L h

Metadata Management

Figure 5-34 Dimensional Model Design Life Cycle

The primary focus of this phase is to design the strategy to handle the following:
» Aggregation

Chapter 5. Dimensional Model Design Life Cycle 183

» Aggregate navigation
» Indexing
» Partitioning

5.7.1 Aggregations

Aggregates provide a restricted list of the key columns of a fact table and an
aggregation - generally a SUM() - of some or all of the numeric facts. Therefore,
a fact table with eight dimensional keys and four numeric facts can be
aggregated to a summary table of three dimensional keys, plus two facts.

In simple terms, aggregation is the process of calculating summary data from
detail base level fact table records. Aggregates are a powerful tool for
increasing query processing speed in dimensional data marts. The aggregation
is primarily performed by using attributes of a dimension which are a part of a
hierarchy.

A dimension table is made of attributes, and consists of hierarchies. A hierarchy
is a cascaded series of many-to-one relationships. Some attributes inside the
dimension table typically belong to one or more hierarchy.

Each attribute that belongs to a hierarchy associates as a parent or child with
other attributes of the hierarchy. This parent-child relationship provides different
levels of summarization. The various levels of summarization provide the
business user the ability to drill up or drill down in the report. Highly aggregated
data is faster to retrieve than detailed atomic level data. And, the fact table
typically occupies a large volume of space when compared to the aggregated
data.

The lowest level of aggregation, or the highest level of detail, is referred as the
grain of the fact table. The granularity of the dimension affects the design of data
storage and retrieval of data. One way to identify candidates for aggregates is to
use automated tools that are available in the market, or write your own
applications to monitor the SQL generated in response to business queries and
identify predictable queries that can be processed using precomputed
aggregates rather than ad hoc SQL.

Costs associated with aggregation

Aggregating detailed atomic fact tables improves query performance. However,
there are costs associated with aggregation, such as:

» Storage cost
» Cost to build and maintain the ETL process to handle the aggregated tables

184 Dimensional Modeling: In a Business Intelligence Environment

Aggregations to avoid

Aggregation should not be considered as a substitute for reducing the size of
large detailed fact tables. If data in the fact table is summarized, detailed
information in the form of dimensions and facts is often lost. If the business
needs detailed data from a summarized fact table, they simply cannot get it.
They would need to look for the details back in the source OLTP system that
provided the aggregated fact table data. Of course if the business has to go back
to the source OLTP systems to get the answers, then the whole purpose of
building a dimensional model should be questioned. We discuss the importance
of having a detailed atomic grain in more detail in 6.2.2, “Importance of detailed
atomic grain” on page 228.

Another important point while creating aggregates is to avoid mixing aggregated
data and detailed data by including year-to-date aggregated facts with the
detailed facts. This is primarily because year-to-date facts are additive, so it
could result in accidental miscalculations. For more on this, see 5.5.4,
“Year-to-date facts” on page 176.

Suggested approaches for aggregation

In this section, we provide guidelines for preparing aggregate tables based on
detailed (highly atomic) base-level fact tables:

1. Identify all dimensions and their hierarchies from the base level atomic
dimensional model. These dimensions and hierarchies are identified from the
base-level atomic dimensional model, depicted in Figure 5-35.

Retail_Sales
PRODUCTKEY
EMPLOYEEKEY

CUSTOMERKEY EROINIGT) |
SUPPLIERKEY
DATEID

T m—eﬂ SUPPLIER |
STOREID
CUSTOMER _MINI_DIMENSION_KEY

[BILL_NUMBER(DD)] CISLLIE |
[UNIT PRICE]
DISCOUNT m_&l STORE |
QUANTITY

[TOTAL AMOUNT]

[COST PRICE PER [TEM]
[COST PRICE AMOUNT]
[STORAGE COST PER ITEM]
[LABOR COST PER ITEM]

|T.[ME |~ﬂ—ﬂ=
| Date |@_m
Iﬂ—m

| EMPLOYEE

| CUSTOMER_MINI_DIMENSION |@—‘I‘

Figure 5-35 Retail sales business process dimensional model

Table 5-30 on page 186 shows all dimensions and all hierarchies
associated with each of these dimensions, including their levels.

Chapter 5. Dimensional Model Design Life Cycle 185

Table 5-30 Dimensions and their hierarchies

Name Hierarchy Type

Date Calendar Hierarchy: Calendar Year — Calendar Balanced
Month — Calendar Week

Fiscal Hierarchy: Fiscal Year — Fiscal Quarter — Fiscal
Month — Fiscal Day

Time No Hierarchy

Product CategoryName — BrandName — ProductName Balanced

Employee No Hierarchy

Supplier Supplier Country — Supplier Region — Supplier City Balanced

Customer Customer Country — Customer Region — Customer Balanced
City

Store Store Country — Store State — Store Region — Store Balanced
Area

Customer_ No Hierarchy

Mini_

Dimension

2. Identify all possible combinations of these hierarchy attributes which are used
together by business for reporting.

In this step we identify all attributes from the hierarchies (see Table 5-30) to
determine which of these are used frequently together. This is extremely
critical, particularly if there are a huge number of dimensions with several
hierarchies having several attributes in them.

Assume from studying the business requirements, we find that the attributes
(relating to Date, Product, and Store dimensions) are used together. These
attributes are shown in Table 5-31.

Table 5-31 Candidate dimensions and their hierarchies for aggregation

Name Hierarchy Type

Date Calendar Hierarchy: Calendar Year — Calendar Balanced
Month — Calendar Week

Product CategoryName — BrandName Balanced

Store Store Country — Store State — Store Region Balanced

186 Dimensional Modeling: In a Business Intelligence Environment

3. Calculate the number of values of each attributes selected for aggregation, in
Table 5-31 on page 186.

It is important to consider the number of values for attributes that are
candidates for aggregation. For example, suppose that you have 1 million
values for the lowest level product name (assuming that the store sells 1
million different types of products). We do not include the product name as a
candidate to be aggregated because we are dealing with a huge number of
rows. We use the brand and category attributes of the product hierarchy
because the brand has about 10 000 values and category has about 1 500
values. Moreover, the business is more interested in understanding the sales
of brands and categories of products, than individual products.

The number of values each attribute has is indicative of whether the attribute
is a candidate to be aggregated. For example, if we find that a low level
member in the hierarchy has been included and has a huge number of
members (values), then we may drop that particular attribute and choose a
higher level attribute which would ideally have fewer values.

Table 5-32 shows attributes with examples of the number of possible values.

Table 5-32 Dimension attributes with values

Name Hierarchy Type

Date Calendar Hierarchy: Calendar Year (12 Years) — Balanced
Calendar Month (12 Month Names) — Calendar Week
(52 Weeks)

Product CategoryName (1,500 Categories) — BrandName Balanced
(10,000 Brands)

Store Store Country (50 Countries) — Store State (50 Balanced

States) — Store Region (6000 Regions)

4. Validate the final set of attribute candidates and build the aggregated
dimensional model.

In this step we validate the final dimensional attributes identified in Table 5-32.
We may also decide to drop one or more attributes if we think that the
attribute has a large number of values. The final set of the aggregated
dimensional model is shown in Figure 5-36 on page 188. Depending upon the
need, one or more such aggregated models can be created.

Chapter 5. Dimensional Model Design Life Cycle 187

EMPLOYEE =3 ooy

CUSTOMER _MINI_DIMENSION 2—)

Retail_Sales
PRODUCTKEY
EMPLOYEEKEY
CUSTOMERKEY
SUPPLIERKEY
DATEID
TIMEID
STOREID

[UNIT PRICE]
DISCOUNT
QUANTITY
[TOTAL AMOUNT]

[STORAGE COST PE

CUSTOMER_MINI_DIMENSION_KEY
[BILL_NUMBER(DD)]

[COST PRICE PER ITEM]
[COST PRICE AMOUNT]

[LABOR COST PER ITEM]

B G- PRODUCT

. C= SUPPLIER

. = CUSTOMER

oo ¢+ STORE

‘ Base Level Aggregate Fact table

R ITEM]

Grain: A single line item on Grocery Receipt

f

DATE

7| [DATE_AG_ID]
CALENDAR _WEEK
CALENDAR_MONTH

CALENDAR_YEAR

View created from Product Dimension j

——— > View created from Date Dimension

View created from Store Dimension

PRODUCT
F[PrODUCT_AG_ID
PRODUCT_BRAND_NAME

PRODUCT_CATEGORY_MAME

RETAIL_SALES_AGGREGATE1
PRODUCT_AG_ID
DATE_AG_ID
STORE_AG_ID
[UNIT PRICE]

DISCOUNT

QUANTITY

[TOTAL AMOUNT]

[COST PRICE PER ITEM)
[COST PRICE AMOUNT]
[STORAGE COST PER ITEM]
[LABOR COST PER TTEM]

STORE
@ [STORE_AG_ID
[F>=€= | sTORE_REGION
STORE_STATE
STORE_COUNTRY

‘ Aggregated Fact table

Grain: Product by Brand by Week by Store Region

Figure 5-36 Aggregated dimensional design

5.7.2 Aggregate navigation

188

Aggregate navigation is considered an advanced concept in data warehousing,

although the concept is actually simple.

What is aggregate navigation?

Aggregate navigation is software that intercepts SQL requests and transforms

them to use the best available aggregates. Aggregate navigation is software that
intercepts an SQL request (say SQL1) and transforms it to a new SQL statement
(assume SQL2) to be used against a particular aggregate. Aggregate navigation
is a technique that involves redirecting SQL queries to appropriate precomputed

aggregates. The concept behind this technique is that the SQL queries are
intercepted and rewritten to take the best advantage of aggregate tables
available inside the warehouse. As shown in Figure 5-37 on page 189,
Aggregate navigator
is a software application that sits between the user and data warehouse.

Dimensional Modeling: In a Business Intelligence Environment

/23%

/ Detailed Day level Star

Aggregate Navigator
' (Accepts and
sQL Transforms SQL1 to
ﬂ—b $QL2), plus redirects | —~ddregate
request the SQL2 to Aware
& (sQL1) appropriate Agg. (SQLZ)
Table)

Week Level Star

SQL1 Statement SQL2 Statement
requesting data at requesting Year data
Year Level from Month Level Star

Month Level Star

Figure 5-37 Aggregate navigator

The Aggregate navigator accepts the SQL1 statement and analyzes it. For
example, as shown in Figure 5-37, the aggregator accepts the SQL1 statement
and sees that the user requests data at the year level. Now there are 3 star
schemas in Figure 5-37 from which the user can get the data for year level. The
aggregate navigator chooses the month level star schema. Choosing the month
level star schema instead of the day or week level star schema improves the
performance of the query. This is because fewer rows in month need to be
summarized to get to the year level data. Had we chosen the day or week, more
numbers of rows would have to be summarized to get to the same result.

Aggregate navigation helps to optimize the queries by choosing the most
appropriate aggregated schema to get to the desired results. Several database
vendors have chosen to implement aggregate navigation software in their
databases. In the next section, we discuss optimization with IBM DB2.

DB2 Optimizer and DB2 Cube Views

DB2 Cube Views V8.2 works together with partner Bl tools to accelerate OLAP
queries. Queries from many data sources, supported by IBM WebSphere
Information Integrator, can be accelerated by DB2 Cube Views. DB2 Cube Views
works by using cube meta data to design specialized summary tables containing
critical dimensions and levels — or slices — of the cube. The DB2 optimizer
rewrites incoming queries, and transparently routes eligible queries to the
appropriate summary tables for significantly faster query performance. The Cube
Views-created summary tables, also called Materialized Query Tables (MQTs),
can accelerate all SQL-based queries to the data warehouse, not just those

Chapter 5. Dimensional Model Design Life Cycle 189

using a particular tool or interface. The DB2 optimizer rewrites and redirects the
incoming queries as shown in Figure 5-38. For a more detailed discussion how
the DB2 SQL optimizer navigates between the various base and summary
tables, refer to 6.5.1, “DB2 Optimizer and MQTs for aggregate navigation” on

page 318.
Optimizer transparently
rewrites incoming queries 1. Base data? = ‘%
Fetch & Sum
n rows
Select
Sum (Sales)... 2. Partial Aggregate?
Where Product in ('Cola’,'Root Fetch & Sum
Beer’)
Group by Product
DB2 Optimizer 3. Full Aggregate?
Simple Fetch
-

Figure 5-38 DB2 Optimizer

5.7.3 Indexing

Indexing of database tables can improve query performance, for example in
situations where a number of tables are joined or a subsets of records are

retrieved.

In general, indexes keep information about where the record (row) with a
particular key or attribute is physically located in a table. If a table is indexed, the
database engine does not need to scan the entire table to look for a row with the
specific key or attribute. Instead of scanning the entire table, the database reads
the index entries and directly retrieves the rows from the table. It is typically
better to scan indexes than the entire table.

Two types of indexes
In this section we provide a brief description of index types. They are:

» Unique: Each row is uniquely identified by the value of the index.

» Non-unique: The value of the index can identify one or more rows in the
table.

190 Dimensional Modeling: In a Business Intelligence Environment

In addition, indexes can differ based on their physical organization:

» B-Tree: Leaf nodes contain the value of the index and a pointer to the
physical row. Use this type of index for attributes with high cardinality, such as
PK or FK.

» Bitmap: Each unique value has a corresponding bitmap where each bit
represents each row in the table, and value 1 in the bitmap means the
corresponding row has this value. Use this type of index for attributes with low
cardinality. An example is a field storing a status such as active or inactive.

Clustering

B-tree indexes can also be clustered. Here physical rows are sorted in order of
the index, which can dramatically decrease the number of I/O operations when
tables are read in order of index.

Clustered indexes are most efficient if no modification to tables are performed
after the clustered index is created. If new rows are added or old rows are
updated and/or deleted, the efficiency of a clustered index decreases because
the rows are no longer in the physical order of the index. To correct this, you
should recreate clustered indexes from time to time. Although, this can be a
rather expensive operation if the tables become very large. In some RDBMS,
indexes can be partitioned in a similar way that tables are partitioned. That is,
some part of the indexes can be put in separate logical spaces. This can also
improve query response time since some parts of index (index partitions) can be
completely eliminated from the scan.

Index maintenance

In addition to the advantages that indexes typically bring, there also costs.
Indexes require additional space and also increase processing time when
records are inserted, deleted, or updated. For example, when a row is updated,
the RDBMS must also delete the old index entries corresponding to old values
and add new index entries for new values of updated columns in the row.

Note: Activities that may help in maintaining indexes are:

» Use the run statistics utility for all tables and all indexes.
» Reorganize clustered indexes.

Indexes for star schema

To summarize, the star schema model consists of dimension and fact tables.

A fact table contains facts and foreign keys (FK) of dimensions. The fact table
foreign key (FK) points to corresponding primary keys (PK) in the dimension
tables. Dimension tables consist of a primary key and attributes that describe the
measures of the fact table.

Chapter 5. Dimensional Model Design Life Cycle 191

Fact tables may have one composite primary key to identify a unique set of
measures and foreign keys (FK). If the set of foreign keys is not unique, we can
introduce one or more degenerate dimensions, which, along with the FKs, will
make it a unique key.

Note: The RDBMS optimizer decides when to use and when to not use
indexes, using table and index statistics to make the decision.

Indexes for dimensions

Indexing dimension tables is an iterative activity. Dimension tables may have
many indexes, and those listed below should be considered as mandatory:

» One unique B-tree index for the primary key (PK) identifying the row in
dimension table.

» For each attribute corresponding to a dimension hierarchy level one, a
non-unique index should be used - unless it is snowflaked.

» One or more additional non-unique indexes on attributes, to be used as filters
in queries.

» Non-unique B-tree index for the foreign key of a snowflaked dimension table.

Indexes for a fact table

First consider if we need to ensure uniqueness within the fact table. If yes, then
create a unique B-tree index from foreign keys, and degenerate dimensions if
applicable.

Then create a non-unique non-clustering B-tree index for each foreign key and
degenerate dimensions.

Do not index numeric facts attributes. If you have need to filter facts by some
numeric, you may introduce a new dimension such as a fact value band. This
table may store band range of values, such as100-9900 and 9901-99992. You
can also address this need with an OLAP reporting application. However, we
show a technique that can be used to index facts. It is discussed in more detail in
“Selective indexes” on page 194

Note: The type of indexes you choose depends on attribute cardinality and on
the capabilities of underlying indexes. We suggest using B-tree for high
cardinality attributes and Bitmap for low or medium cardinality attributes. For
example, if attribute values are highly duplicated, such as gender, status, or
color attributes, consider using bitmap indexes. Bitmap indexes, if well
designed, can dramatically improve query response times. Multidimensional
clustered (MDC) or block indexes (see “MDC indexes” on page 194) are
suitable for indexing fact table FKs and degenerate dimensions.

192 Dimensional Modeling: In a Business Intelligence Environment

Vendor specific indexing techniques

Several vendors offer special proprietary types of indexes, designed for
optimizing queries, for example, the multidimensional clustered (MDC) indexes
in IBM DB2 or generalized key (GK) indexes in IBM Informix Extended Parallel
Server (XPS).

Generally these indexes are defined either on one, or more than one, table (GK
indexes) or on clusters of values from various attributes (MDC indexes). The
primary goal of such advanced indexing is to eliminate unnecessary joins and
table scans, and to reduce query response time. Generalized key indexes
provide the following three types of advanced indexes that can improve OLAP
query performance:

» Join indexes
» Virtual indexes
» Selective indexes

Join index

This capability allows you to create an index on a fact table that contains
attributes of the dimension table. Using this index can eliminate the need to join
the tables.

For example, if we have a SALES fact table, with item and sales amount, and the
dimension table PRODUCT, describing items that have attribute BEVERAGE,
then you can create an index on the fact table containing BEVERAGE of each
item. As an example, you can do that with the following command:

CREATE GK INDEX type of sale ON SALES
(SELECT PRODUCT.BEVERAGE FROM SALES, PRODUCT
WHERE SALES.PRODUCT_KEY = PRODUCT.PRODUCT_KEY)

Then when querying for sales amounts of certain product types, the join of the
SALES table and PRODUCT dimension can be eliminated. For example,
consider the following query:

SELECT SUM(SALES_AMOUNT) FROM SALES, PRODUCT
WHERE SALES.PRODUCT KEY = PRODUCT.PRODUCT_KEY AND PRODUCT.BEVERAGE =
"SODA"

Virtual indexes

This capability allows you to create an index not only on one or more columns,
but also on expressions based on those columns. This enables fast queries on
computed values, and can save disk space as well.

For example, if you have a table with columns UNITS and UNIT_COST, you can
create an index on the COST_OF _SALE as follows:

Chapter 5. Dimensional Model Design Life Cycle 193

194

CREATE GK INDEX I_cost_of_sale on SALES (SELECT
SALES.UNITS*SALES.UNIT_COST FROM SALES)

This index then speeds up queries such as the following:

SELECT * FROM SALES WHERE UNITS*UNIT_COST >60

Note: Virtual indexes are useful when a fact table contains derived facts.

Selective indexes

This capability enables you to index only part of a large table, saving disk space
and speeding up the queries.

For example, you can create an index such as the following:

CREATE GK INDEX sincel995 ON SALES (SELECT AMOUNT FROM SALES JOIN
DATE_DIM ON SALES.DAY_DIM_KEY=DATE_DIM.DAY_DIM KEY WHERE DATE_DIM.YEAR
>=1995)

Then you can create a fast query such as this:

SELECT * FROM SALES WHERE amount >500 AND YEAR >=1995

MDC indexes

IBM DB?2 V8.x enables you to create advanced clustered indexes, also known as
multidimensional clustered (MDC) indexes, which are optimized for OLAP
queries. MDC indexes are based on blocks (extents), while traditional indexes
are based on rows. Therefore in an MDC index, the leaf entries point to blocks of
pages which have rows with the same value of the columns. Traditional index leaf
entries point to a physical row on a page. MDC indexes are clustered as rows
and grouped by values of columns in the indexes. At least one block is created for
each unique value of a dimension.

A cell is a unique combination of values across all dimensions. Data in the MDC
tables is clustered via cells.

When creating MDC tables, a blocked index is created for each dimension and
one covering all dimensions. Blocked indexes optimize query response time
because the optimizer can quickly identify blocks of pages with required values in
particular columns. Further, the maintenance of MDC tables is simplified as no
data reorganization is needed. If there is no cell for new or updated rows or if all
blocks for this cell are full, another block is allocated and a new entry for this
block is added into block indexes.

Dimensional Modeling: In a Business Intelligence Environment

Note: When designing MDC tables, the cost of disk space should be
considered. Although block indexes demand less disk space, the minimal disk
space needed for data in MDC tables is the cartesian product of all
cardinalities of all dimensions multiplied by block (extent) size.

You can find a more detailed example of indexing in 6.5.2, “Indexing for
dimension and fact tables” on page 324, which includes the following topics:

Indexes for the star schema (includes indexing for dimensions and facts)
Differences between indexed and non-indexed star schemas

Access plans for querying an indexed star schema with SQL

Access plans for querying a non-indexed star schema with SQL

v

vYyy

5.7.4 Partitioning

Partitioning a table divides the table by row, by column, or both. If a table is
divided by column, it is said to be vertically partitioned. If by row, it is said to be
horizontally partitioned. Partitioning large fact tables improves performance
because each partition is more manageable and provides better performance
characteristics. Typically, you partition based on the transaction date dimension
in a dimensional model. For example, if a huge fact table has billions of rows, it
would be ideal for one month of data to be assigned its own partition.

Partitioning the data in the data warehouse enables the accomplishment of
several critical goals. For example, it can:

» Provide flexible access to data

» Provide easy and efficient data management services

» Ensure scalability of the data warehouse

» Enable elements of the data warehouse to be portable. That is, certain
elements of the data warehouse can be shared with other physical data
warehouses, or archived on other storage media.

Guidelines for partitioning star schema data are explained below:

» A large fact table with a large number of rows should be partitioned based on
the date dimension.

» Depending upon the growth of the fact table, an individual partition may be
created for each unique months of data or each unique quarter of data.

» Large dimension tables, such as customer table of a government agency,
having millions of customers may also be partitioned.

Chapter 5. Dimensional Model Design Life Cycle 195

We usually partition large volumes of current detail data by dividing it into smaller
segments. Doing that helps make the data easier to:

Restructure

Index
Sequentially scan
Reorganize
Recover

Monitor

vVvyYvyvyYYyvyy

In addition, other advantages of partitioning are:

» Improved response times because the SQL query only accesses the partition
of data needed to answer the query.

» Partitions can be more easily maintained compared to one large table.

» Involves no extra cost, as most partitioning capability is typically included as
part of the RDBMS.

Every database management system (DBMS) has its own specific way of
implementing physical partitioning, and they all can be quite different. For
example, it is an important consideration whether or not the DBMS also supports
partition indexing. Instead of DBMS or system level partitioning, you can
consider partitioning by application. This would provide flexibility in defining data
over time, and portability in moving to the other data warehouses. Notice that the
issue of partitioning is closely related to multidimensional modeling, data
granularity modeling, and the capabilities of a particular DBMS to support data
warehousing.

5.8 Meta data management

Figure 5-39 on page 197 shows that the meta data management block spans the
entire DMDL. That is, every phase of dimensional modeling produces some level
of meta data.

196 Dimensional Modeling: In a Business Intelligence Environment

Identify Model Components |

Requirements Grain Dimensions Facts
Determine All !
Document/Study Identify Fact Table Dimensions | Identify Facts |
Enterprise Business Granularity
Processes
Identify Degenerate and ;
h . Identify Conformed
Select Business _L Identify Multiple _L Conformed Dimensions Facts
Process to Model € Separate Grains Identify Dimensional
— for a Single Attributes (Granularity) -
Identify High level Business Process and Attribute Hierarchies Identify Fact types

Entities and (Additive, Semi Additive,
Measures for Identify Date and Time Non-Additive, Derived,
Conformance Identify the Fact Granularity Textual, Pseudo, or

Table Types Fact-less Facts) and

Identify Data (Transaction, Identify Slowly Changing Default Aggregate Rules

Sources Periodic, and Dimensions

Accumulating)

Select Requirements Identify Fast Changing | Year-to-date Facts |

Grain Definition Report
L !

Requirement Gathering Repo
¥

Physical Design Considerations
(Indexing, Partitioning and Aggregation)

Verify Design with User Requirements

Gathering Approach Dimensions
(Source Driven N
Check Grain for
OF. ‘ Atomicity ‘ Identify cases for | Event Fact Tables |
User Driven) Snowflaking
N — — | Composite Key Design |
ReQUIremen!S Identify preliminary Dimensional Challenges
Gathering candidates for (Multi-valued, Garbage,
dimensions and Heterogeneous, Hot Fact Table
Requirements facts from the grain Swappable, Sizing and Growth
Analysis Roleplaying)

ﬂ

L &= = L = Iterate L = = L =

Metadata Management

Figure 5-39 Dimensional Model Design Life Cycle

In the traditional development cycle, a model sees only sparse use after
completion. This is typically when changes need to be made, or when other
projects require the data. In the data warehouse, however, the model is used on
a continuous basis. The users of the data warehouse constantly reference the
model to determine the data they want to use in their data analysis. The rate of
change of the data structure in a data warehouse is much greater than that of
operational data structures. Therefore, the technical users of the data warehouse
(administrators, modelers, and designers, as examples) will also use the model
on a regular basis.

This is where the meta data comes in. Far from just a pretty picture, the model
must be a complete representation of the data being stored.

To properly understand the model, and be able to confirm that it meets
requirements, you must have access to the meta data that describes the
dimensional model in business terms that are easily understood. Therefore,
non-technical meta data should also be documented in addition to the technical
meta data.

Chapter 5. Dimensional Model Design Life Cycle 197

At the dimensional model level, a list should be provided of what is available in
the data warehouse. This list should contain the models, dimensions, facts, and
measures available as these will all be used as initial entry points for data
analysis.

For each model, provide a name, definition, and purpose. The name simply gives
something to focus on when searching. Usually, it is the same as the fact. The
definition identifies what is modeled, and the purpose describes what the model
is used for. The meta data for the model should also contain a list of dimensions,
facts, and measures associated with it, as well as the name of a contact person
so that users can get additional information when there are questions about the
model.

A name, definition, and aliases must be provided for all dimensions, dimension
attributes, facts, and measures. Aliases are necessary because it is often difficult
to come to agreement on a common name for any widely used object. For
dimensions and facts, a contact person should be provided.

Meta data for a dimension should also include hierarchy, change rules, load
frequency, and the attributes, facts, and measures associated with the
dimension. The hierarchy defines the relationships between attributes of the
dimension that identify the different levels that exist within it. For example, in the
seller dimension we have the sales region, outlet type (corporate or retail), outlet,
and salesperson, as a hierarchy. This documents the roll-up structure of the
dimension. Change rules identify how changes to attributes within a dimension
are dealt with. In some instances, these rules can be different for individual
attributes. Record change rules with the attributes when this is the case. The
load frequency allows the user to understand whether or not data will be
available when needed.

The attributes of a dimension are used to identify which facts to analyze. For
attributes to be used effectively, meta data about them should include the data
type, domain, and derivation rules. At this point, a general indication of the data
type (such as character, date, and numeric) is sufficient. Exact data type
definitions can be developed during design. The domain of an attribute defines
the set of valid values. For attributes that contain derived values, the rules for
determining the value must be documented.

Meta data about a fact should include the load frequency, the derivation rules
and dimensions associated with the fact, and the grain of time or date for the
fact. Although it is possible to derive the grain of time for a fact through its
relationship to the time dimension, it is worthwhile explicitly stating it here. It is
essential for proper analysis that this grain be understood.

198 Dimensional Modeling: In a Business Intelligence Environment

5.8.1 Identifying the meta data

The following meta data is collected during the different phases of the DMDL.:

» Identify business process: The output of this phase results in the
requirements gathering report. This report primarily consists of the business
requirements for the selected business for which you will design the

dimensional model. In addition to this, it also consists of various business

processes, owners, source systems involved, data quality issues, common
terms used across business processes and other business-related meta data.

» Identify the grain: The output of this phase results in the grain definition

report, which consists of one or multiple definitions of the grain for the
business process for which the dimensional model is being designed. Also
the type of fact table (transaction, periodic, or accumulating) being used is

mentioned. The grain definition report also includes high level preliminary
dimensions and facts.

» Identify the dimensions: The meta data documented for this phase contains
the information as shown Table 5-33:

Table 5-33 Identify the dimensions phase meta data

Dimension meta data

Description

Name of dimension

Name of the dimension table.

Business definition

Business definition of the dimension.

Alias Specifies the other known name by which the business
users know the dimension.
Hierarchy Defines the hierarchies present inside the dimension, such

as balanced, unbalanced, or ragged.

Change rules

Specify how to handle slowly changing dimension (type-1,

type-2, or type-3) or fast changing dimension.

Load frequency

The frequency of load for this dimension, such as daily,
weekly, or monthly.

Load statistics

Consists of meta data such as:
— Last load date: N/A
— Number of rows loaded: N/A

Usage statistics

Consists of meta data such as:

— Average Number of Queries/Day: N/A
— Average Rows Returned/Query: N/A
— Average Query Runtime: N/A

— Maximum Number of Queries/Day: N/A
— Maximum Rows Returned/Query: N/A
— Maximum Query Runtime: N/A

Chapter 5. Dimensional Model Design Life Cycle

199

Dimension meta data

Description

Archive rules

Specifies whether or not data is archived.

Archive statistics

Consists of meta data such as:
— Last Archive Date: N/A
— Date Archived to: N/A

Purge rules

Specifies any purge rules. For example, customers who
have not purchased any goods from the store in the past 48
months will be purged on a monthly basis.

Purge statistics

Consists of meta data such as:
— Last Purge Date: N/A
— Date Purged to: N/A

Data quality

Specifies data quality checks. For example, when a new
customer is added, a search determines if the customer
already does business with another location. In rare cases
separate branches of a customer are recorded as separate
customers because this check fails.

Data accuracy

Specifies the data accuracy. For example, incorrect
association of locations of a common customer occur in
less than .5% of the customer data.

Key

The key to the dimension table is a surrogate key.

Key generation method

This meta data specifies the process used to generate a
new surrogate key for a new dimension row. For example,
when a customer is copied from the operational system,
the translation table (a staging area persistent table) is
checked to determine if the customer already exists in the
dimensional model. If not, a new key is generated and the
key along with the customer ID and location ID are added
to the translation table. If the customer and location already
exist, the key from the translation table is used to determine
which customer in the dimensional model to update.

200 Dimensional Modeling: In a Business Intelligence Environment

Dimension meta data

Description

Source

This includes the following meta data:

— Name of the source system table: <Table Name>

— Conversion rules: This specifies how the insert/update
to the dimension table occurs. For example, rows in each
customer table are copied on a daily basis. For existing
customers, the name is updated. For new customers, once
a location is determined, the key is generated and a row
inserted. Before the update/insert takes place, a check is
performed for a duplicate customer name. If a duplicate is
detected, a sequence number is appended to the name.
This check is repeated until the name and sequence
number combination is determined to be unique. Once
uniqueness has been confirmed, the update/insert takes
place.

— Selection logic: Only new or changed rows are
selected.

Conformed dimension

This specifies if the dimension is a conformed dimension.

Role-playing dimension

This specifies if the dimension is being implemented using
the role-playing concept.

Chapter 5. Dimensional Model Design Life Cycle 201

202

Dimension meta data Description

Attributes The meta data for all the dimension attributes includes the
(All columns of a following:

dimension) - -

— Name of the attribute: <Attribute Name>

— Definition of the attribute: Attribute definition

— Alias of the attribute: <Attribute Name>

— Change rules for the attribute: For example, when an
attribute changes, then use Type-1, Type-2, or Type-3
strategy to handle the change.

— Data Type for the attribute: Data type, such as Integer
or Character.

— Domain values for the attribute: Domain range such as
1-99.

— Derivation rules for the attribute: For example, a system
generated key of the highest used customer key +1 is
assigned when creating a new customer and location entry.

— Source: Specifies the source for this attribute. For
example, for a surrogate key, the source could be a system
generated value.

Facts This specifies the facts that can be used with this
dimension.

Note: Semi-additive facts are additive across only some
dimensions.

Subsidiary dimension This specifies any subsidiary dimension associated with
this dimension.

Contact person This specifies the contact person from the business side
responsible for maintaining the dimension.

The meta data information shown in Table 5-33 on page 199 needs to be
captured for all dimensions present in the dimensional model.

» Identify the facts: The meta data documented for this phase contains the
information as shown Table 5-34.

Table 5-34 Identify the facts phase meta data

Fact table meta data

Description

Name of fact table

The name of the fact table.

Dimensional Modeling: In a Business Intelligence Environment

Fact table meta data

Description

Business Definition

The business definition of the fact table.

Alias The alias specifies another name by which the fact table
is known.
Grain This specifies the grain of the fact table.

Load frequency

The frequency of load for this fact table such as daily,
weekly or monthly.

Load statistics

Consists of meta data such as:
— Last load date: N/A
— Number of rows loaded: N/A

Usage statistics

Consists of meta data such as:

— Average Number of Queries/Day: N/A
— Average Rows Returned/Query: N/A
— Average Query Runtime: N/A

— Maximum Number of Queries/Day: N/A
— Maximum Rows Returned/Query: N/A
— Maximum Query Runtime: N/A

Archive rules

Specifies whether or not the data is archived. For
example, data will be archived after 36 months on a
monthly basis.

Archive statistics

Consists of meta data such as:
— Last Archive Date: N/A
— Date Archived to: N/A

Purge rules

Specifies any purge rules. For example, data will be
purged after 48 months on a monthly basis.

Purge statistics

Consists of meta data such as:
— Last Purge Date: N/A
— Date Purged to: N/A

Data quality

Specifies quality checks for the data. For example,
assume that we are designing a fact table for an
inventory process. Inventory levels may fluctuate
throughout the day as more stock is received into
inventory from production and stock is shipped out to

retail stores and customers. The measures for this fact
are collected once per day and thus reflect the state of

inventory at that point in time, which is the end of the
working day.

Chapter 5. Dimensional Model Design Life Cycle

203

204

Fact table meta data

Description

Data accuracy

This specifies the accuracy of fact table data. For
example, assume that we are designing a fact table for
the inventory process. We may conclude that the
measures of this fact are 97.5% accurate at the point in
time they represent. This may be based on the results
of physical inventories matched to recorded inventory
levels. No inference can be made from these measures
as to values at points in time not recorded.

Grain of the date
dimension

Specifies the grain of the date dimension. For example,
the date dimension may be at the day level.

Grain of the time
dimension

Specifies the grain of the time dimension. For example,
the time dimension may be at the hourly level.

Key

The key of the fact table typically consists of
concatenation of all foreign keys of all dimensions. In
some cases, the degenerate dimension may also be
concatenated to guarantee the uniqueness of the
primary composite key.

Key generation method

The key generation method specifies how all the foreign
keys are concatenated to create a primary key for the
fact table. Sometimes a degenerate dimension may be
needed to guarantee its uniqueness. This is shown in
Figure 5-32 on page 179.

Source

The meta data for the source includes the following:

— Name of the Source: <Source Name>

— Conversion rules for the source: Rules regarding the
conversion. For example, each row in each inventory
table is copied into the inventory fact on a daily basis.

— Selection Logic: The selection logic behind selecting
the rows.

Facts

This specifies the facts involved in the fact table. They
could be:

— Additive

— Non-additive

— Semi-additive

— Pseudo

— Derived

— Factless fact

— Textual

Dimensional Modeling: In a Business Intelligence Environment

Fact table meta data

Description

Conformed fact

This specifies whether or not there are any conformed
facts in the fact table.

Dimensions

This specifies the dimensions that can validly use these
facts. Note: Some facts are semi-additive and can only
be used across certain dimensions.

Contact person

This specifies the contact person from the business side
responsible for maintaining the fact table.

made or changes to the requirements are documented.

contains the information as shown in Table 5-35.

Table 5-35 Physical design considerations meta data

Verify the model: This phase involves documenting meta data related to the
testing (and its result) done on the dimensional model. Any new requests

Physical Design Considerations: The meta data documented for this phase

Physical design
consideration meta data

Description

Aggregation

The aggregation meta data includes the following:

— Number of aggregate tables

— Dimension hierarchies involved in creating
aggregation

— Dimension tables involved in creating aggregates

— Fact table and facts involved in creating aggregates.

Other information relating to the aggregate tables
includes the following:
— Load frequency
— Load statistics

— Usage statistics
— Archive rules

— Archive statistics
— Purge rules

— Purge statistics

— Data quality

— Data accuracy

Indexing

and fact tables.

This specifies the indexing strategy used for dimension

Chapter 5. Dimensional Model Design Life Cycle

205

5.9 Summary

206

In 5.2.2, “Identify business process” on page 110, we created an enterprise
business process list for which there are business needs to build a data mart or
dimensional model.

After identifying all the business processes, we assessed each of them for a
number factor, such as:

v

» Data availability of these systems
» Data quality of these systems
» Strategic business significance of the business process

Complexity of the source systems of the business process

After having assessed the various business processes, we developed the final
prioritization list shown in Table 5-36.

Table 5-36 Enterprise-wide business process priority listing

Name Complexity | Availability | Quality Significanc | Points
e

Retail sales Low (3) High (3) High (3) High (6) 15

Finance High (1) High (3) Medium (2) | Medium (4) | 10

Servicing Low (3) High (3) Medium (2) | High (6) 14

Marketing Medium (2) Medium (2) Medium (2) | Medium (4) | 10

Shipment Low (3) Low (1) High (3) Low (2) 9

Supply Medium (2) Low (1) Medium (2) | Low (2) 7

management

Purchase High (1) Medium (1) | Low (1) Medium (4) | 7

order

Labor Low (3) Low (1) Low (1) High (2) 7

Table 5-36 helped us to prioritize the business processes for which we can
design the dimensional models. In this chapter, we chose the top priority retail
sales business process and designed a data mart using the DMDL. After we
finish with the design of one data mart, we can then move to the next priority data
mart from Table 5-36.

The DMDL helps us segment the larger task of building data marts for the entire
organization by choosing a step by step approach of handling each business

Dimensional Modeling: In a Business Intelligence Environment

process, one at a time. This approach enables you to start small, and complete
the project in planned phases.

In addition, you remember that data warehousing itself is a process. That is,
typically you are never really finished. You will undoubtedly continue to add
people, processes, and products to your enterprise. Or, specifications about
those people, processes, and products will change over time. As examples,
people get married, have children, and move. This requires modifying, for
example, dimensional data that describes those people.

So, as with any data warehousing project, building dimensional models is a
continuous and ongoing project. Having a defined DMDL, and using suggestions
in this redbook, can help you to build a structured, controlled, planned, and
cost-effective approach to building several dimensional models for your data
warehousing environment which are integrated by using conformed dimensions
and conformed facts.

Chapter 5. Dimensional Model Design Life Cycle 207

208 Dimensional Modeling: In a Business Intelligence Environment

Modeling considerations

In this chapter, we discuss considerations, and challenges that may arise, when
designing dimensional models. As examples:

»

Converting an E/R model to dimensional model. How do you identify fact and
dimension tables from an E/R model? And, how do you convert an E/R model
to a dimensional model?

Identifying the grain.

Working with degenerate dimensions, dimension hierarchies, time as a fact or
dimension, slowly changing dimensions, fast changing dimensions,
identifying and handling snowflakes, identifying garbage dimensions,
handling multi-valued dimensions, use of bridge tables, handling
heterogeneous products, and handling hot swappable dimensions (also
referred as profile tables).

Working with additive and semi-additive facts, composite key design, and
event fact tables.

What about physical design activities, such as indexing?
Working with changes to data, structure, and requirements.

© Copyright IBM Corp. 2006. All rights reserved. 209

6.1 Converting an E/R model to a dimensional model

In this section we describe how to convert an E/R model to a dimensional model.
A dimensional model can be created from the enterprise data warehouse or
directly from OLTP source systems. For additional information, refer to:

» Enterprise data warehouse: “Data warehouse architecture choices” on
page 57.

» OLTP Source systems: “Data modeling: The organizing structure” on page 47
in the following sections:

— “Independent data mart architecture” on page 59
— “Dependent data mart architecture” on page 61

The following are the steps for converting an E/R model to a dimensional model:

Identify the business process from the E/R model.

Identify many-to-many tables in the E/R model to convert to fact tables.
Denormalize remaining tables into flat dimension tables.

Identify date and time from the E/R model.

vyvyyy

The steps are explained in detail in the following sections.

6.1.1 Identify the business process from the E/R model

It is important to understand that an E/R model can be segmented into
multiple dimensional models. An E/R model (which may be an enterprise data
warehouse or an OLTP source system) consists of several business
processes. This is depicted in Figure 6-1 on page 211. For example, an E/R
model for an ERP system includes several business processes, such as retalil
sales, order management, procurement, inventory, and store and warehouse
inventory management.

210 Dimensional Modeling: In a Business Intelligence Environment

Business
Process #1 —
fffff S
N
3 [] |
I) L o
(R B 1w g
Nl B | 3
L \%ﬂH%ﬁi; -
SN B
: T— N .
e N W S S
i Pl ettt || W Y A 1 I
———\|_|____/I J: ‘—lLl_#
ISP A — 3
age—] I
Business Business
Process #3 Process #2

Figure 6-1 E/R model consists of several business processes

6.1.2 Identify many-to-many tables in E/R model

Once the business processes are separated, the next step is to identify the
many-to-many tables (many-to-many relationships) in the E/R model and convert
them to dimensional model fact tables. These many-to-many relationships
contain numeric and additive non-key facts which generally become facts inside
the fact table.

The idea behind this step is to identify the transaction-based tables that serve to
express many-to-many relationships inside an E/R model.

Every E/R model consists of transaction-based tables which constantly have
data inserted, or are updated with data, or have data deleted from them. Some of
these tables also express a many-to-many relationship. For example, in an ERP
database, there are transaction tables, such as Invoice and Invoice_Details,
which are constantly inserted and updated because they are transaction-based
tables. However, tables such as Employee and Products in an E/R model may
be fairly static.

Description of many-to-many relationships

Many-to-many (m:n) relationships add complexity and confusion to the model
and to the application development process. The key to resolving m:n
relationships is to separate the two entities and create two one-to-many (1:n)

Chapter 6. Modeling considerations 211

relationships between them with a third intersect entity. The intersect entity
usually contains attributes from both connecting entities.

To resolve an m:n relationship, analyze the business rules again. Have you
accurately diagrammed the relationship? The telephone directory example has a
m:n relationship between the name and fax entities, as Figure 6-2 depicts. The
business rules say, “One person can have zero, one, or many fax numbers; a fax
number can be for several people.” Based on what we selected earlier as our
primary key for the voice entity, an m:n relationship exists.

A problem exists in the fax entity because the telephone number, which is
designated as the primary key, can appear more than one time in the fax entity;
this violates the qualification of a primary key. Remember, the primary key must

be unique.
name
rec_num PK
A address
fname
bdate id_num PK
anniv rec_num FK
email PHO—)-|— street
child1 city
child2 state
child3 zipcode
L))
A fax >]'\modem
;{; voice fax_num PK mdm_num PK| | PK = Primary Key
vee num PK rec_num FK rec_num FK FK = Foreign Kay
rec_num FK oper_from b9600 (R
vee-type oper_till b14400
b28800

Figure 6-2 Telephone directory diagram to show many to many relationship
To resolve this m:n relationship, you can add an intersect entity between the

name and fax entities, as depicted in Figure 6-3 on page 213. The new intersect
entity, fax name, contains two attributes, fax_num and rec_num.

212 Dimensional Modeling: In a Business Intelligence Environment

name name
rec_num PK rec_num PK
Iname Iname
fname fname
bate bate
anniv ff faxgirpi anniv
email e | fax_num ~ email
child1 §| rec_num PKFK PO child1
child2 A4 child2
child3 child3
(:
fax H
fax_num PK fax PK = Primary Key
rec_num FK fax_num PK FK = Foreign Key
oper_from oper_from
oper_till oper_till

Figure 6-3 Many-to-many relationship

Another example for many-to-many relationship is shown in Figure 6-4.

Employee @ Projects

Programming
Skills

Figure 6-4 Many-to-many relationship

In Figure 6-4, the many-to-many relationship shows that employees use many
programming skills on many projects and each project has many employees with
varying programming skills.

6.1.3 Denormalize remaining tables into flat dimension tables

The final step involves taking the remaining tables in the E/R model and
denormalizing them into dimension tables for the dimensional model. The
primary key of each of the dimensions is made a surrogate (non-intelligent,
integer) key. This surrogate key connects directly to the fact table.

Chapter 6. Modeling considerations 213

6.1.4 Identify date and time dimension from E/R model

The last step generally involves identifying the date and time dimension. Dates
are generally stored in the form of a date timestamp column inside the E/R
model. You will observe that date and time-related columns are generally found
in the transaction-based tables.

We explain the process of converting an E/R model to a dimensional model in the
section below.

Example: An E/R model conversion

We convert the E/R model shown in Figure 6-5 to a dimensional model using the
following steps:

1. Identify the business process: We discussed this step in detail in “Identify
the business process from the E/R model” on page 210. The business
process we identified for our example is retail sales. The E/R model for this
retail sales schema is shown in Figure 6-5.

Department Suppliers
@ |Emp_Department_ID i EEEE:::;II?WDE - i) |~o=""1 Supplier_Type
frrs o DepatmancCoae Supper_fiane Pl
i EmployeelD [Department Description] Supplier_Location_Manager SUEE“EF_DYEEEHDﬁDI‘I
| |Emp_Department_ID [Department Head] Supplier_Region b =
— Manager_ID Department_Start_Date
| |Lasthame E_cm Brand
Firsthlame
—Tite Products @ |[Brand_ID)
T | mtleofCourtesy I — Store_BILLING Store_Billing_Details # | ProductlD A |_|Brand_Description
__|Ibate of Eirhi] @ [BILL_NUMBER -] | B |BILL_NUMBER ool |Productiiame | category_ID
" |HireDate Customer_ID |ProductlD || supplierl g
Employee_ID UnitPrice " |categoryiD
Store_Biling_Date Quantity : [Product Code] Categories
o L el Store_Biling_Time g::i:roum] ___|[Product vGA] | 2 |categoryD
Store_Start_Date | [Product Country] CategoryName
% |Store_ID Store ID [Storage Cost Per Item] [Product Record] I pesai
] I ption
| |store_Code [Cost Price Per Item] [Product BNA] |Pictu
| |store_MName j [Labor Cost Per Item] | BrandID L_|Picure
Store_Region_ID | mare. .
[|store_Type 0 ! d Pack
EI Customers IIL | #|Package_ID
7 | CustomerID ~ “! Region | |Package Type
T Customer_Type_ID 7 [RegionID o Package_Description
| Customer_RegionID :‘ Customer_Region_Descrif A—r]
Store_Region Customer _Shopper_Il Territories
¢ | Store_Region_ID | Customer_Full_Name # [TerritoryID ~
: Store_Region_Mame || customer_First_Name Customer_Type :‘Customer_Territory_Descript
| |store_County || customer_tast_Name 7 |Customer_Type_ID Region[D]
| |Store_State : Address Customer_Type
City Customer _Type_Descripti
T Region w

Figure 6-5 E/R model for retail sales business process

214

2. ldentify the many-to-many tables in the E/R model to convert them to fact
tables. After identifying the business process as retail sales, and identifying
the E/R model as shown in Figure 6-5, the next step is to identify the

Dimensional Modeling: In a Business Intelligence Environment

many-to-many relationships that exist inside the model. In order to find this,
we must segregate the tables inside the E/R model into two types.
Transaction-based tables and Non-Transaction based tables, as shown in
Table 6-1.

Note: Fact tables in a dimensional model express the many-to-many
relationships between dimensions. This means that the foreign keys in the fact
tables share a many-to-many relationship.

What is a transaction-based table? In an E/R model, it is one which is
generally involved in storing facts and measures about the business. Such
tables generally store foreign keys and facts, such as quantity, sales price,
profit, unit price, and discount. In transaction tables, records are usually
inserted, updated, and deleted as and when the transactions occur. Such
tables also in many ways represent many-to-many relationships between
non-transaction-based tables. Such tables are larger in volume and grow in
size much faster than the non-transaction-based tables.

What is a non-transaction-based table? This is an E/R model which is
generally involved in storing descriptions about the business. Such tables
describe entities such as products, product category, product brand,
customer, employees, regions, locations, services, departments, and
territories. In non-transaction tables, records are usually inserted and there
are fewer updates and deletes. Such tables are far smaller in volume and
grow very slowly in size, compared to the transaction-based tables.

Table 6-1 Transaction and Non-transaction tables in the E/R model

Transaction tables Non-transaction tables
Store_BILLING Employees: Stores information about
[This transaction table stores the employees.

BILL_NUMBER, Store Billing date, and
time information. The detailed Bill
information is contained inside the
Store_Billing_Details table.]

Store_Billing_Details Department: Stores department
[This transaction table stores the details | information for every employee.
for each store bill.]

Store: Stores the name of the store and
type of store information.

Store_Region: Stores the region, county,
state, and country to which the store
belongs.

Chapter 6. Modeling considerations 215

216

Transaction tables

Non-transaction tables

Suppliers: Stores the supplier name and
supplier manager-related information.

Supplier_Type: Stores supplier type
information.

Products: Stores information relating to
products.

Brand: Stores brand information to which
different products belong.

Categories: Stores categories information
to which different product brands belong.

Packaging: Stores packaging-related
information for each product.

Customers: Stores customer-related
information.

Region: Stores different regions to which
customers belong.

Territories: Stores territories to which
different customers belong.

Customer_Type: Stores customer
classification information.

The transaction tables are identified in Table 6-1 on page 215, and we depict

them in Figure 6-6 on page 217.

Dimensional Modeling: In a Business Intelligence Environment

[

Employeas
EmployeelD
Emp_Department_ID
Manager_ID
LastMame

Firsthlame

Title

TiteOfCourtesy
[Date of Birhi]
HireDate

LTI =

Department
¢ | Emp_Department_ID
[Department Mame]

[Department Code]
[Department Description]
[Department Head)]
Department_Start_Date

Suppliers

¢ | SupplierID
Supplier_Type_ID
Supplier_Name

Supplier_Region

Supplier_Location_Manager

Supplier_Type

| Supplier_Type_ID
Supplier_Type

Supplier_Description

1]
=
=]

re

Store_ID
Store_Code
Store_Mame
Store_Region_ID
Store_Type

1] e

oy

Store_Region

® | Store_Region_ID
Store_Region_Mame
Store_County
Store_State

Customer_Shopper_II
Customer _Full_MName

Customer_First_Mame
Customer_Last_Name

Address

LI |=

City
Region

o[£

Customer_Type
| Customer_Type_ID
Customer_Type

7 Brand
Transaction Based Tables = : Products | [Brand_ID
o Store BILLING Store_Billing_Details 2 [Productd - L Brand_Description
3 [BILL_NUMBER =y B |BILL_NUMBER .| |Productiiame __|Category 1D
Customer_ID 7 |Productid : SupplierlD
Employee_ID Llnmi'r\.ce __|CategoryID
Store_Biling_Date Quantity [Product Code] Categories
st Silling i [Total Amount] || [Product v&a]

e ore_Gilling_Time Di ¢ I ¢ | CategoryID
Store_Start_Date St | |[Product Country] | categoryName
Store_ID [Storage Cost Per Item] [Product Record] | bescription

[Cost Price Per Ttem] || [Product 8MA] 1 picture
[Labor Cost Per Ttem] BrandID =
| More...] ~
) = Pach
Customers ‘Ilo i Package_ID
CustomerID ~ “| Region __|Package Type
Customer_Type_ID % |RegionID L Package_Description
Customer_RegionID Customer _Region_Descrif
Territories

R | TerritoryID
Customer_Territory_Descripti

RegionID

Customer_Type_Descripti

Figure 6-6 Identifying transaction-based tables in the E/R model

The Store_BILLING and Store_Billing_Details tables express a many-to-many
relationship that exists between Employee, Store, Customers, and Products.
Some of the relationships are explained below:

» Each Employee can sell many products and each Product could be sold by
many Employees.

» Each Store could sell many Products and each Product could be sold by

many Stores.

» Each Customer could buy many products and each product could be bought
by many Customers.

» Each Employee could sell to many Customers and each Customer could
purchase from many Employees.

Figure 6-7 on page 218 shows that the Store_BILLING and Store_Billing_Details
transaction tables express many-to-many relationships between the different
non-transaction tables.

Note: The many-to-many tables in the E/R model are converted to
dimensional model fact tables. The many-to-many tables in the E/R model are

generally the transaction-oriented tables.

Chapter 6. Modeling considerations

217

218

Transaction Based Tables

1
' Suppli
Store BILITNG Store_Billing_Details : upplier
7 BILL_NUMEER = | 7 |BILL_NUMBER
Customer_ID 7 |ProductiD 1 1
Emplayee_ID UnitPrice 1 /\
Store_Biling_Date Quantity 1

Store_Biling_Time

= = [Total Amount]
Store_Start_Date om— Products
Store_ID

[Storage Cost Per Item] 1

Employee -I<
[Cost Price Per Ttem]

! 1
1 [Labor Cost Per Item] 1
1

1

Store Customer

Figure 6-7 Identifying many-to-many relationships in an E/R model

The Store_BILLING and Store_Billing_Details tables are the tables that identify
the many-to-many relationship between Employee, Products, Store, Customer,
and Supplier tables. The Store_BILLING table stores billing details for an order.

After having identified the many-to-many relationships in the E/R model, we are
able to identify the fact table as shown in Figure 6-8.

FACT_TBL
PRODUCTKEY
. EMPLOYEEKEY\
| cusTomeriey 3 Foreign Keys
SUPPLIERKEY
" |sToREID —
" |[BILL_NUMBER{DD)] —— D?gene':ate
| [unIT PRICE] Dimension
" |oiscounT
T |quanTTTy
| [TOTAL AMOUNT]
" | [coST PRICE PER ITEM] Facts
| [cOST PRICE AMOUNT] /
" |[STORAGE COST PER ITE
|| 1.aBOR cosT PER ITE Note: Store_BILLING and
Store_Billing_Details tables
convert to a Fact table

Figure 6-8 Fact table

The fact table design may change depending upon the grain chosen.

3. Denormalize remaining tables into flat dimension tables: After we
identified the fact table in Step 2, the next step is to take the remaining tables

Dimensional Modeling: In a Business Intelligence Environment

in the E/R model and denormalize them into dimension tables. The primary
key of each of the dimensions is made a surrogate (non-intelligent, integer)

key. This surrogate key connects directly to the fact table.

Table 6-2 shows the various E/R tables (see E/R model in Figure 6-6 on
page 217) that have been denormalized into dimension tables.

Table 6-2 E/R model to dimension model conversion

Name of tables in E/R model Corresponding Refer to
denormalized figure
dimension table

Customers, Region, Territories, and Customer Figure 6-9

Customer_Type

Products, Brand, Categories, and Packaging | Product Figure 6-10

Suppliers and Supplier_Type Suppliers Figure 6-11

Employees and Department Employees Figure 6-12

Store and Store_Region Store Figure 6-13

Figure 6-9 on page 220 shows that the Customers, Region, Territories, and
Customer_Type tables in the E/R model are denormalized to form a Customer
dimension table. The Customer dimension table has a surrogate key.

Chapter 6. Modeling considerations

219

Customers

| ¥ | CustomerlD -
Customer_Type_ID 1
| |Customer_RegionID Region Territories
L | Customer_Shopper_IT %‘ RegionID F | TerritoryID
I N . e
L | ustomerf.ullj*lame . Customer_Region_Descrif Customer_Territory_Desc
Customer_First_Mame RegionID
Customer_Last_Mame
Addi (o — o
— Cityress Customer_Type
1 Region # | Customer_Type_ID
| PosgtaICode Customer_Type
| Country - Customer_Type_Descripti

(Denormalization of Customer
Tables in the E/R Model)

o

ustomers *

[CustomerID {Surrogate Key)]
Customer_Type
Customer_Type_Description
Customer_Region_Description
Customer_Territory_Description
Customer_Shopper_ID
Customer_Full_Name
Customer_First_Name
Customer_Last_Mame
Address

City

Region

PostalCode

Country

Phone

Fax

LLITTITT I []

Figure 6-9 Customer dimension table

Figure 6-10 on page 221 shows that the Products, Brand, Categories, and
Packaging tables in the E/R model are denormalized to form a product
dimension table. The product dimension table has a surrogate key.

220 Dimensional Modeling: In a Business Intelligence Environment

Suppliers y
| 7suppieD | [7=——07| Supplier_Type .
e ¥|suppler Type 0 __| Supplier is handled as a
: Supplier_Name = Suppler_Type Separate Supplier Dimension
Connliar | aratinn ha 0 Supplier_Description
e e |
1 1
1 |Products =% prand [ro—e=| Categories !
I || % [ProductlD » @ [Brand_ID 7| categoryID !
1 [ProductName T Brand_Description CategoryMame !
1 | |supplierD [|category_ID Description !
1| |categoryiD — Picture 1
1 [Product Code] 1
1 | [Product vGa] 1
1 : [Product Country] Packaging 1
1 | |[Product Record] 7 |Package_ID 1
1 || Product Brua] PP~ package Type 1
1 o BrandID | : Package_Description 1
1 l 1
O ’
Products * (Denormalization of
| {ProductlD Product Table in the
Productiame
T [Product Code] E/R MOdeI)
T [Product VGA]
T [Product Country]
| [Product Record]
|| [Product BNA]
_|BrandiD
T Product_Category
T Product_Brand
T Mare...]

Figure 6-10 Product dimension

Figure 6-11 shows that the Suppliers and Supplier_Type tables in the E/R
model are denormalized to form a Supplier dimension table. The Supplier

dimension table has a surrogate key.

¥

Suppliers

SupplierID
Supplier_Type_ID
Supplier_MName

Supplier_Location_Manag

Supplier_Region
Supplier_Address

| |Supplier_City

Region

| |PostalCode

Country

Phone

Fax

: HomePage

Supplier_Type

% | Supplier_Type_ID
Supplier_Type
Supplier_Description

[H
(Denormalization of Supplier
Tables in the E/R Model)

Suppliers *

[SupplierID{Surrogate Key)]
Supplier_Type
Supplier_Description
Supplier_Mame
Supplier_Location_Manager
Supplier_Region
Supplier_Address

| Supplier_City

Region

PostalCode

Country
Phone
Fax

L HomePage

Figure 6-11 Supplier dimension

Chapter 6. Modeling considerations

221

Figure 6-12 shows that the Employees and Department tables in the E/R
model are denormalized to form a Supplier dimension table. The Supplier

dimension table has a surrogate key.

*
Employees Department
¥ EmployeelD (| ® |Emp_Department_ID
| |Emp_Department_ID e ——) [Department Name] Employees *
— | Manager_ID [Department Code] L Emp_Department_Nar|a
o LastName [Department Descriptian] L Emp_Department_Coc
o Firsthame [Department Head] L Emp_Department_Des
| |Tite Department_Start_Date __|Emp_Department_Hez
| TitleOfCourtesy — __|Emp_Department_Sta
| [pate of Birht] | [Manager_1D
o HireDate Lasthame
Address A . | Firstiame
—aity (Denormalization of Employee |—.
||Redon v|| and Department Tables in the | _|mteOfCourtesy
Fmmbaladn [t __|[pate of Birht]
E/R Model) [And More....] id

Figure 6-12 Employee dimension

Figure 6-13 shows that the Store and Store_Region tables in the E/R model
are denormalized to form a Store dimension table. The Store dimension table
has a surrogate key.

Store
% [Store_ID
Store_Code Store *
Store_Mame ? Store ID
Store_Region_ID
Store_Type - Store_Code
Store_Mame
. . Store_Region_Mame
j (Denormalization of Store store Coonty
and Store_Region Tables Store_State
Store_Region in the E/R Mode[) Store_Country
% Store_Region_ID Store_Type
Store_Region_MName
Store_County
Store_State
Store_Country

Figure 6-13 Store dimension table

The resulting dimensional model after we normalize the dimension tables is
shown in Figure 6-14 on page 223.

222 Dimensional Modeling: In a Business Intelligence Environment

Retail_Sales
EMPLOVEE K O |PRODUCTKEY SUPPLIER
| |EmpLoYEEKEY 7 | SUPPLIERKEY ~
7 |EMPLOYEEKEY ~ | |cusTomERKEY [MCRE....] v
[MCRE....] hd | |SUPPLIERKEY
| |sTorED
| [e1_numBER (oD)] F=——%"1 cusToMER
- rof| | [UNIT PRICE] CUSTOMERKEY -
PRODUCT DISCOUNT R [MORE....] v
7 |PRODUCTKEY ~ | quanmry
[MORE....] “ | |[TOTAL AMOUNT]
|| [cosT PRICE PER TTEM]
o |[COST PRICE AMOUNT]
STORE | |[STORAGE COST PER. ITEM]
7 | STOREKEY * [LABOR COST PER ITEM]
[MORE....] s =

Figure 6-14 Dimensional model after step 3

4. Add date and time dimensions: The last step involves identifying the date

and time dimension. Dates are generally stored in the form of a date
timestamp column inside the E/R model.

The date and time are stored in the columns called Store_Billing_Date and
Store_Billing_Time of the Store_BILLING table of the E/R model as shown in

Figure 6-15.

Store Billing Date «—__|

Store Billing Time «— |

Store_BILLING
& [BILL_NUMBER

Customer_ID
Employee_ID

t— | Store_Billing_Date
Store_Biling_Time
Store_Start_Date
Store_ID

Store_Billing_Details
| BILL_MUMEBER

? ProductID

" |UnitPrice

Quantity

[Total Amount]

Discount

[Storage Cost Per Item]

[Cost Price Per Ttem]
: [Labor Cost Per Item]

Figure 6-15 Identifying date and time in the E/R model

The E/R models typically have some form of dates associated with them. These
dates are generally stored in the transaction-based tables in the form of a date
timestamp column. There may also be time associated with the business which

is also stored in the form of a date timestamp column present inside the

transaction-based tables.

After the date and time columns are identified in the E/R model, they are usually
modeled as separate date and time dimensions as shown in Figure 6-16 on

page 224.

Chapter 6. Modeling considerations

The final dimensional model

The dimensional model that results from the steps taken is shown in Figure 6-16.

PRODUCT

E

STORE =3 ==

CUSTOMER -2 o

!

Re

tail_Sales
PRODUCTKEY
EMPLOYEEKEY
CUSTOMERKEY
SUPPLIERKEY

DATEID

TIMEID

STOREID
[BILL_NUMBER(DD)]
[UNIT PRICE]
DISCOUNT

QUANTITY

[TOTAL AMOUNT]

[COST PRICE PER. ITEM]
[COST PRICE AMOUNT]
[STORAGE COST PER ITEM]
[LABOR. COST PER ITEM]

“ EMPLOVEE

CoaE

SUPPLIER

TIME

Figure 6-16 The dimensional model

6.2 Identifying the grain for the model

224

The lowest level of data represented in a fact table is defined as grain. The focus
of this section is to discuss the Identify the grain component in the DMDL, as

depicted in Figure 6-17 on page 225.

Dimensional Modeling: In a Business Intelligence Environment

Requirements

Grain

Identify Model Components

Document/Study
Enterprise Business
Processes

Select Business
Process to Model

Identify High level
Entities and
Measures for
Conformance

Identify Data
Sources

Select Requirements
Gathering Approach
(Source Driven
Or
User Driven)

"]

Requirement Gathering Repo
¥

Requirements
Gathering

Requirements

Analysis

Identify Fact Table
Granularity

Identify Multiple
Separate Grains
for a Single
Business Process

—

Identify the Fact
Table Types
(Transaction,
Periodic, and

Accumulating)

Grain Definition Report
¥

Check Grain for
Atomicity

Identify preliminary
candidates for
dimensions and

facts from the grain

Dimensions

Facts

Determine All
Dimensions

Identify Facts

Identify Degenerate and
Conformed Dimensions

Identify Conformed
Facts

Identify Dimensional
Attributes (Granularity)

and Attribute Hierarchies

Identify Date and Time
Granularity

Identify Slowly Changing
Dimensions

Identify Fact types
(Additive, Semi Additive,
Non-Additive, Derived,
Textual, Pseudo, or
Fact-less Facts) and
Default Aggregate Rules

Identify Fast Changing
Dimensions

Year-to-date Facts

Identify cases for
Snowflaking

Event Fact Tables

Dimensional Challenges

(Multi-valued, Garbage,
Heterogeneous, Hot
Swappable,
Roleplaying)

| Composite Key Design |

Fact Table
Sizing and Growth

e = & =

Iterate L &= &= L

Verify Design with User Requirements

-

Physical Design Considerations
(Indexing, Partitioning and Aggregation)

ﬂ

Metadata Management

Figure 6-17 Dimensional Model Design Life Cycle

In this section we discuss the importance of having the grain defined at the most
detailed, or atomic, level. When data is defined at a very detailed level, the grain
is said to be high. When there is less detailed data, the grain is said to be low. For
example, for date, a grain of year is a low grain, and a grain of day is a high grain.
We also discuss when to consider separate grains for a single business process.

6.2.1 Handling multiple, separate grains for a business process

Typically separate business processes always require separate dimensional

models with unique grain definitions. Each business process consists of several
facts and dimensions which are different from the other business processes. As
discussed in Chapter 5, “Dimensional Model Design Life Cycle” on page 103, we
take the following steps to create a dimensional model:

Identify business process.
Identify grain.

Identify dimensions.
Identify facts.

vyvyyvyy

Chapter 6. Modeling considerations 225

We explain the concept of multiple fact table grains in the following steps:

1. Business process: Assume that we are creating a dimensional model for the
retail sales business of a big clothing merchandise brand which has stores all
over the U.S. The business is interested in tracking the sales of the goods
from all of its stores. It is also interested in analyzing the reasons for all of its
returned clothing products at all stores and in analyzing all suppliers of
products based on the percentage of defective returned goods.

2. ldentify the grain for the retail sales.
There are two separate grain definitions for the retail sales business process:

— For tracking sales in all clothing stores, the grain definition is: One single
clothing line item on a bill.

— For tracking returned clothing goods in all stores, the grain definition is:
Every individual clothing item returned by a customer to any store.

3. Identify the dimensions for the different grains.

— For grain 1 (sales tracking): product, time, customer, date, employee,
supplier, and store

— For grain 2 (returned goods tracking): return date, purchase date,
customer, store purchased, products returned, and reasons for return.

4. |dentify the facts for the different grains.

— For grain 1 (sales tracking): unit price, discount, quantity sold, and
revenue

— For grain 2 (returned goods tracking): revenue returned and quantity
returned

Note: A single business process may consist of more than one dimensional
model. Do not force fit the different facts and dimensions which belong to
different dimensional models into a single star schema. We strongly
recommend that separate grains are identified for a business process when
you are not able to fit facts or dimensions in a single star model.

Figure 6-18 on page 227 shows the dimensional model designed for the sales
tracking in the retail sales business process having the grain equivalent to one
single line item on a bill.

226 Dimensional Modeling: In a Business Intelligence Environment

| PRODUCT a== Retail_Sales "~ EMPLOYEE |
PRODUCTKEY

=d—oo| | EMPLOYEEKEY

| " |cusToMERKEY m_ej SUPPLIER |

| suPpLIERKEY

DATEID

| mED

| CUSTOMER r‘“" STORED

" | [BILL_NUMBER(DD)] STORE |

[UNIT PRICE FACT]

| Date | [1scounT FacT]

| [IQuANTITY FACT]
[REVENUE FACT]

| TIME

Figure 6-18 Retail sales business star schema for sales tracking

Figure 6-19 shows the dimensional model designed for the retail sales business
process having the grain equivalent to every individual item returned by a
customer to any store.

| RETURN DATE |~ﬂﬂ= RETURN_PRODUCTS_FA
| |ProDUCTKEY m—43=1 PRODUCT |
CUSTOMERKEY
| " |suepLIERKEY
PURCHASED_DATE |‘ﬂ‘” —IRETURN DATE
" |PURCHASE_DATEID IO |
| |RETURN_DATEID
RETURN_REASON | |RETURN_REASON
@ [RETURN_REASON_ID | B _mumeeR(DD)] SUPPLIER |
RETURN_REASON_DESCRIPTION || QUANTITY_RETURNED
RETURN_REASON_DEFECT ___|REVENUE_RETURNED

Figure 6-19 Retail Sales Business star schema for tracking returned goods

When to create separate fact tables

When designing the dimensional model for a business process, one or more fact
tables can be created. Here are guidelines to consider when deciding to make
one or more fact tables for designing the dimensional model for the business
process:

» Facts that are not true (valid) to any given grain should not be forced into the
dimensional model. Often facts that are not true to a grain definition belong to
a separate fact table with its own grain definition.

» Dimensions that are not true (valid) to any given grain should not be forced
into the dimensional model. Often such dimensions belong to a separate
dimensional model with its own fact table and grain.

» Separate fact tables (dimensional models) should always be created for each
unique business process.

Chapter 6. Modeling considerations 227

6.2.2 Importance of detailed atomic grain

The granularity may be defined as the level of detail made available in the
dimensional model. The grain definition is extremely significant from a business,
technical, and data mart project standpoint.

It is extremely important that the grain definition is chosen at the most detailed
atomic level. The atomic grain is important from three broad perspectives as we
discuss below:

» From a business perspective:

From a business perspective, the grain of the fact table dictates whether or
not we can easily extend the dimensional model to add new dimensions or
facts as, and when, the business requirements change. A dimensional model
designed at the lowest level grain (detail) is easy to change. New dimensions
or facts can be added to the existing dimensional model without any change
to the fact table grain, which means that new business requirements can be
delivered from existing dimensional models without the need of much change
to an existing one. This is good for businesses whose requirements typically
change.

The dimensional model should be designed at the most detailed atomic level
even if the business requires less detailed data. This way the dimensional
model has potential future capability and flexibility (regardless of the initial
business requirements) to answer questions at a lower level of detail.

To summarize the importance of grain from a business perspective, we look
at an example. Assume your organization wants to analyze customer buying
trends by product line and region so that you can develop more effective
marketing strategies. Consider the following options:

— Customer by Product

The granularity of the fact table always represents the lowest level for
each corresponding dimension. When you review the information from the
business process, the granularity for customer and product dimensions of
the fact table are apparent. Customer and product cannot be reasonably
reduced any further. That is, they already express the lowest level of an
individual record for the fact table. In some cases, product might be further
reduced to the level of product component because a product could be
made up of multiple components.

— Customer by Product by District

Because the customer buying trends that your organization wants to
analyze include a geographical component, you still need to decide the
lowest level for region information. The business process indicates that in
the past, sales districts were divided by city. But now your organization
distinguishes between two regions for the customer base: Region 1 for

228 Dimensional Modeling: In a Business Intelligence Environment

California and Region 2 for all other states. Nonetheless, at the lowest
level, your organization still includes sales district data, so district
represents the lowest level for geographical information and provides a
third component to further define the granularity of the fact table.

— Customer by Product by District by Day

Customer-buying trends always occur over time, so the granularity of the
fact table must include a time component. Suppose your organization
decides to create reports by week, accounting period, month, quarter, or
year. At the lowest level, you probably want to choose a base granularity
of day. This granularity allows your business to compare sales on
Tuesdays with sales on Fridays, compare sales for the first day of each
month, and so forth. The granularity of the fact table is now complete.

The decision to choose a granularity of day means that each record in the
time dimension table represents a day. In terms of the storage
requirements, even 10 years of daily data is only about 3,650 records,
which is a relatively small dimension table.

» From a technical perspective:

— From a technical perspective, the grain of the fact table has a major
impact on the size of the star schema. The more atomic the grain, the
bigger the size.

— The atomic grain results in a huge dimensional model, which can impact
the operating cost for performing related tasks such as ETL, as well as the
performance.

» From a project task lists perspective:

— The most detailed atomic grain means that the project team needs to
represent the data in more detail. This means that the data mart
development team will need to understand more E/R or data
warehouse-related tables and their corresponding attributes.

— The more detailed the grain, the more complex related procedures, such
as ETL. This means designing more complex procedures and also
maintaining more complex meta data.

Note: If the dimensional model is designed with a higher level grain (meanin it
is highly aggregated and therefore contains less detailed data), there will be
fewer dimensions available for use to perform detailed analyses.

Factors to consider when deciding the grain, are as follows:

» Current Business Requirements: The primary factor to consider while
deciding the dimensional model grain is the current business requirement.
The basic minimum need of the dimensional model grain is to be able to

Chapter 6. Modeling considerations 229

answer the current business requirements. It is important to remember that
the primary purpose for developing a dimensional model is to satisfy a set of
business requirements and therefore the grain should be kept at a level of
detail which satisfies those requirements.

» Future Business Requirements: Another important factor to always
consider are the future business requirements. For example, if you design the
model to be based on a weekly grain because the business requires only
weekly data for its reports, then you may not be able to get reports based on
daily data if the business requires daily data in the future. It is important to
understand the potential future needs and perhaps design the model at a
lower grain than dictated by the present requirements. However, storing the
data at a more detailed grain means spending more on maintaining the more
atomic grain, but without any present business value. So, it is important that
when you design a model with more detailed grain than currently required,
you understand the additional overhead costs and prepare satisfactory
justification.

How granularity affects the size of the database

The granularity of the fact table also determines how much storage space will be
required for the database. For example, consider the following possible
granularities for a fact table:

» Product by day by region
» Product by month by region

The size of a database that has a granularity of product by day by region would
be much greater than a database with a granularity of product by month by
region because the database contains records for every transaction made each
day as opposed to a monthly summary of the transactions. You must carefully
determine the granularity of your fact table because too fine a granularity could
result in a huge database. Conversely, too coarse a granularity could mean the
data is not detailed enough for users to perform meaningful queries.

6.2.3 Designing different grains for different fact table types
In the retail sales example, the grain is of the transaction fact table type.

There are three types of fact tables. They are:

» Transaction fact table
» Periodic fact table
» Accumulating fact table

The reason to show different types of fact tables is to emphasize that each
typically has different types of grain associated with it. It is important that the

230 Dimensional Modeling: In a Business Intelligence Environment

designer be aware of these fact table types so that the designer can use the most
appropriate type of the fact tables.

There are also differences in ways the inserts and updates occur inside each of
these fact tables. For example, with the transaction and periodic fact tables, only
inserts take place and no rows are updated. With the accumulating fact table, the
row is first inserted, and then subsequently updated as a milestone is achieved
and facts are made available.

We now discuss each of the different fact tables.

Transaction fact table

A transaction-based fact table is a table that records one row per transaction. An
example of a transaction-based fact table is shown in Figure 6-20 on page 232.
Here the fact table records all transactions that happen for an individual account
of a customer of a bank. Assume that a customer named Sherpa makes the
following transactions in the month of August 2005 against his bank account:

» Money Withdrawn: $400, Date: August 2, 2005, Time: 4:00AM

» Money Deposited: $300, Date: August 4, 2005, Time: 3:00AM

» Money Withdrawn: $600, Date: August 5, 2005, Time: 2:00PM

» Money Withdrawn: $900, Date: August 6, 2005, Time: 9:00PM

» Money Deposited: $900, Date: August 18, 2005, Time: 7:00AM

» Money Deposited: $800, Date: August 23, 2005, Time: 1:00AM

Figure 6-20 on page 232 shows that in a transaction fact table, a single row is

inserted for each bank account transaction (deposit or withdrawal) that Sherpa
makes. Important features about the transaction fact table are:

» A single row is inserted for each transaction.

» Typically, the date and time dimensions are represented at the lowest level of
detail. For example, the date dimension may be represented at the day level
and the time dimension may be represented at the hour or minute level.

» The transaction fact table is known to grow very fast as the number of
transactions increases.

Chapter 6. Modeling considerations 231

CUSTOMER
% | CUSTOMER._ID
CUSTOMER._NUMBER.
CUSTOMER._MAME

ORE.....
BRANCH ™ !
1 ERANCH 1D j TRANSACTION_DATE
ggmg:ﬁgg: | [TRANSACTION_DATE_ID |
ERANCH_DESCRIPTION I EV G TRANSACTION_DATE
- TRANSACTION_DATE_ID [TRANSACTION CALENDAR DAY]
BRANCH_ADDRESS _DATE
TRANSACTION_ID [MORE...]
IMORE....] s
ACCOUNT_ID
CUSTOMER _ID
=00 ERANCH 1D |oa—=6-| TRANSACTION_TYPE
ACCOUNT]
7 [ACCOUNT_ID e LU | A ACTION TP (Deposit or Withdrawal)
- TRANSACTION_FEES TRANSACTION_TYpE B> .
ACCOUNT_NUMBER - [MORE...] Transaction Type
ACCOUNT_OPEN_DATE
ACCOUNT_TYPE_CODE
[MORE...]

6 Rows inserted (1 row for each Transaction)

Row 1: Withdrawal: $400, Date: 2nd August 2,2005, Time: 4:00AM
Row 2: Deposit: $300, Date: 4th August 4,2005, Time: 3:00AM
Row 3: Withdrawal: $600, Date: 5nd August 5,2005, Time: 2:00PM
Row 4: Withdrawal: $900, Date: 6th August 6,2005, Time: 9:00PM
Row 5: Deposit: $900, Date: 18th August 18,2005, Time: 7:00AM
Row 6 :Deposit: $800, Date: 23rd August 23,2005, Time: 1:00AM

Figure 6-20 Transaction fact table

Periodic fact table

A periodic fact table stores one row for a group of transactions made over a
period of time.

An example of a periodic-based fact table is shown in Figure 6-21 on page 233
where the fact table records a single row per month for all transactions against an
individual account.

Assume that a customer named Sherpa makes the following transactions in the
month of August 2005:

Money Withdrawn: $400, Date: August 2, 2005, Time: 4:00AM
Money Deposited: $300, Date: August 4, 2005, Time: 3:00AM
Money Withdrawn: $600, Date: August 5, 2005, Time: 2:00PM
Money Withdrawn: $900, Date: August 6, 2005, Time: 9:00PM
Money Deposited: $900, Date: August 18, 2005, Time: 7:00AM
Money Deposited: $800, Date: August 23, 2005, Time: 1:00AM

vyvyvyvyYyvyy

In the transaction-based fact table, we stored six rows for the six transactions
shown above. However, for the periodic-based fact table, we consider a time
period (end of day, week, month, or quarter) for which we need to store the
transactions as a whole.

232 Dimensional Modeling: In a Business Intelligence Environment

Figure 6-21 shows a periodic fact table. The grain of the fact table is chosen as
the account balance per customer at the end of each month. Observe that we do
not record each of the transaction dates separately, but instead use the Month
dimension.

Note: It is important to understand that when we design a periodic fact table,

certain dimensions are not defined when compared to a transaction fact table
type. For example, when comparing the transaction fact table and periodic fact
table, we see that certain dimensions such as Transaction_Type, Branch, and
Transaction_Date are not applicable at the Periodic (Monthly) grain.

ACCOUNT

7 |accounT D]
| ACCOUNT_NUMBER MONTHLY_ACCOUNT oo
| |AccounT_oPEN_DATE MONTH_END_DATE_ID MONTH
| =il e oors 7 [MONTH_END_DATE_ID

ACCOUNT_TYPE_CODE .
— [y CUSTOMER_ID [MONTH NAME]
— [FREVIOUS BALANCE] [CALENDAR MONTH |
[TOTAL DEPOSITS] [MORE...]

CUSTOMER ? [TOTAL WITHDRAWL]

7 |cusToMER_ID [AVAILABLE BALANCE]
| CUSTOMER _NUMBER,
" | cUSTOMER _NAME
" |MoRE....]

1 Row for every Customer every Month

Figure 6-21 Periodic fact table

The periodic fact table design consists of the Month table (Monthly grain). The
periodic fact table MONTHLY_ACCOUNT consists of facts, such as
Previous_Balance, Total_Deposit, Total_Withdrawal, and Available_Balance,
which are true at the periodic month-end grain.

Important features of the periodic fact table are:

» A single row is inserted for each set of activities over a period of time.

» Typically, the date and time dimensions are represented at the higher level of
detail. For example, the date dimension may be represented at the month
level (instead of day) and the time dimension may be represented at the hour
level (instead of seconds or minutes).

» The periodic fact table is known to grow comparatively slowly in comparison
to the transaction fact table.

Accumulating fact table

An accumulating fact table stores one row for the entire lifetime of an event. For
example, from the lifetime of a credit card application being sent to the time it is

Chapter 6. Modeling considerations 233

accepted. Another example could be the lifetime of a job or college application
being sent to the time it is accepted or rejected by the college or the job posting
company.

To understand the concept of an accumulating fact table, consider that a big
recruitment company advertises vacancies in many jobs relating to software,
hardware, networking, apparel, marketing, sales, food, carpentry, plumbing,
housing, house repairs, mechanical, teaching high school, teaching college,
senior management, and working in restaurants. About 100 000 vacancies are
advertised, in all major newspapers every month. The recruitment company
senior management wants to better understand how efficiently their recruitment
staff works in matching potential job candidates with the jobs they seek. The
senior management wants to understand how long it takes for a prospective
candidate to get a job from the time the resume is sent for a particular job
vacancy.

The accumulating fact table is shown in Figure 6-22, where the fact table records
a single row per job vacancy advertised by the recruitment company.

Note: Accumulating fact tables are typically used for short-lived processes
and not constant event-based processes, such as bank transactions.

“ JOB APPLICATIONS FACT

JOBS

[10B_KEY JOB_KEY
JOB JOB DESCRIPTIOM ADVERTISEMENT_MEDIUM_KEY JOB_ADVERTISEMENT_DATE
JOB_CATEGORY JOB_ADVERTISEMENT_DATE_KEY

RECRUITMENT_MANAGER_KEY
APPLICATIONS_RECEIVED_DATE_KEY APPLICATIONS _RECEIVED_DATE |

ADVERTISEMENT_MEDIUM

ADVERTISEMENT_MEDIUM
_?{ ADVERTISEMENT_MEDIUM_KEY |a

APPLICATIONS _ACKMOWLEDGEMENT_DATE_KEY
APPLICATIONS_VALIDATING_DATE_KEY
INTERVIEW _COMDUCTING_DATE_KEY

APPLICATIONS _ACKNOWLEDGEMENT_DATE |

w

FIMNAL_RESULTS_AMMOUNCEMENT_DATE_KEY
[Quantity of Full-time Vacancies for each Job] ‘I‘—&l APPLICATIONS VALIDATING DATE ‘

RECRUITMENT_MANAGER = P
7 [RECRUITMENT_MANAGER_KEY
RECRUITMENT_MAMAGER.

[Quantity of Part-time Vacandies for each Job]

[Quantity of Received Applications (Applied for Full-Time Jobs)]
[Quantity of Received Applications (Applied for Part-Time Jobs)] m—ﬂ INTERVIEW_CONDUCTING_DATE |
[Quantity of Applications Acknowledged (Full-Time Jobs)]

[Quantity of Applications Acknowledged (Part-Time Jobs)]
[Quantity of Accepted Applications {Full-Time Jobs)]
mﬁ FINAL_RESULTS_ANNOUNCEMENT_DATE |

[Quanitity of Accepted Applications (Part-Time Jobs]]
[Quantity of Rejected Applications (Full-Time Jobs)]
[Quantity of Rejected Applications (Part-Time Jobs)]
[Quantity of Interviews conducted for Ful-Time Jobs]
[Quantity of Interviews conducted for Part-Time Jobs]
[Quantity of cancelled Interviews for Full-Time Jobs]
[Quantity of cancelled Interviews for Part-Time Jobs]
[Quantity of selected candidates for Ful-Time Jabs]
[Quantity of selected candidates for Part-Time Jobs]
[Quantity of rejected candidates for Full-Time Jobs]
[Quantity of rejected candidates for Part-Time Jobs]

Figure 6-22 Accumulating fact table

234 Dimensional Modeling: In a Business Intelligence Environment

It is important to understand that there are several dates involved in the entire job
application process. The dates are defined in sequential order in Table 6-3 on
page 236. Also after each subsequent date, certain facts become available. This
is also shown graphically in Figure 6-23.

Note: There are several dates associated with accumulating fact tables. Each
of these dates may be implemented with a single date table using views. The
date table, when implemented using views for different dates, is said to have
been involved in Role-playing. We will discuss Role-playing in more detail in
6.3.9, “Role-playing dimensions” on page 285.

Facts Available at Various Dates:

[Quantity of Full-time Vacancies for each Job]
_~ [Quantity of Part-time Vacancies for each Job]
‘ ORIV S MENTSaTE | [Quantity of Received Applications (Applied for Full-Time Jobs)]

/[Quantity of Received Applications (Applied for Part-Time Jobs)]
=

APPLICATIONS_RECEIVED_DATE
‘ = = | [Quantity of Applications Acknowledged (Full-Time Jobs)]

[Quantity of Applications Acknowledged (Part-Time Jobs)]

‘ APPLICATIONS_ACKNOWLEDGEMENT_DATE |

[Quantity of Accepted Applications (Full-Time Jobs)]
Pl [Quantity of Accepted Applications (Part-Time Jobs)]

‘ APPLICATIONS VALIDATING DATE | [Quantity of Rejected Applications (Full-Time Jobs)]

[Quantity of Rejected Applications (Part-Time Jobs)]

‘ INTERVIEW_CONDUCTING_DATE ~ |

[Quantity of Interviews conducted for Full-Time Jobs]
[Quantity of Interviews conducted for Part-Time Jobs]

‘ F.IIIAL_RESULTS_ANNDUNCEMENT_DA'(E |

[Quantity of Interviews cancelled for Full-Time Jobs]
[Quantity of Interviews cancelled for Full-Time Jobs]

[Quantity of selected candidates for Full-Time Jobs]
[Quantity of selected candidates for Part-Time Jobs]
[Quantity of rejected candidates for Full-Time Jobs]
[Quantity of rejected candidates for Part-Time Jobs]

Figure 6-23 Facts associated with each date milestone in accounts fact table

Table 6-3 on page 236 shows the various dates associated with the accumulating
fact table and the various facts that are made available on each date.

Chapter 6. Modeling considerations 235

Table 6-3 Activities defined to understand the concept of accumulating facts

Dates

Available facts at each corresponding date

Job advertisement
date

The recruitment company advertises several jobs for several
companies.
Important facts available during this date are:

» Number of full-time vacancies for each job

» Number of part-time vacancies for each job

Applications received
date

The application applied date is the date at which different
candidates send the applications for the job vacancies.
Important facts available during this date are:

» Number of received applications (for full-time jobs)
» Number of received applications (for part-time jobs)

Applications The application acknowledgement date is the date when each
acknowledgement candidate who sent a job application is acknowledged (by
date e-mail/phone) that their application has been received and is
being processed.
Important facts available during this date are:
» Number of applications acknowledged (for full-time jobs)
» Number of applications acknowledged (for part-time jobs)
Applications The application validating date is the date on which the

validating date

applications are validated as matching the required
prerequisite requirements for each job. Any application that
does not meet prerequisite job requirements is rejected.
Important facts available during this date are:

» Number of accepted applications (for full-time jobs)
» Number of accepted applications (for part-time jobs)
» Number of rejected applications (for full-time jobs)

» Number of rejected applications (for part-time jobs)

Interview conducting
date

The interview date is the date on which candidates are
interviewed for the job vacancies.
Important facts available during this date are:

» Number of interviews conducted for full-time jobs
» Number of interviews conducted for part-time jobs
» Number of cancelled Interviews for full-time jobs

» Number of cancelled interviews for part-time jobs

Dimensional Modeling: In a Business Intelligence Environment

Dates

Available facts at each corresponding date

Final results

announcement date

The final results announcement date is the date on which
announcement of the selected candidates is made.
Important facts available during this date are:

» Number of selected candidates for full-time jobs
» Number of selected candidates for part-time jobs
» Number of rejected candidates for full-time jobs
» Number of rejected candidates for part-time jobs

Comparison between fact tables
Table 6-4 shows a comparison between the various types of fact tables.

Table 6-4 Comparison of fact table types

dimension at the
lowest
granularity.

dimension at the
end-of-period
granularity. This
could be end of day,
end-of week, end-of
month, or end-of
quarter.

Feature Transaction Periodic type fact Accumulating type fact
type fact table table table

Grain One row per One row per period. | One row for the entire

definition of transaction. For For example, one lifetime of an event. For

the fact table | exampleonerow | row per month fora | example, the lifetime of a
per lineitem ofa | single product sold credit card application
grocery bill. in a grocery store. being sent to the time it is

accepted.
Dimensions Involves date Involves date This type of fact table

involves multiple date
dimensions to show the
achievement of different
milestones.

Chapter 6. Modeling considerations

237

Feature Transaction Periodic type fact Accumulating type fact
type fact table table table
Total number | More than Less than Highest number of
of periodic fact transaction fact dimensions when
dimensions type. type. compared to other fact
involved table types. Generally this
type of fact table is
associated with several
date dimension tables
which are based on a
single date dimension
implemented using a
concept of role-playing.
This is discussed in 6.3.9,
“Role-playing dimensions”
on page 285.
Conformed Uses shared Uses shared Uses shared conformed
Dimensions conformed conformed dimensions.
dimensions. dimensions.
Facts Facts are related | Facts are related to Facts are related to
to transaction periodic activities. activities which have a
activities. For example, definite lifetime. For
inventory amount at | example, the lifetime of a
end of day or week. | college application being
sent to the time it is
accepted by the college.
Conformed Uses shared Uses shared Uses shared conformed
Facts conformed facts. | conformed facts. dimensions.
Database Transaction- The size of a Accumulating fact tables
size basedfacttables | Periodic fact table is | are the smallest in size
have the biggest | smaller than the when compared to the
size. If the grain | Transaction fact Transaction and Periodic
of the table because the fact tables.
transaction is grain of the date and
chosen at the time dimension is
most detailed significantly higher
level, these than lower level date
tables tend to andtime dimensions
grow very fast. present in the
transaction fact
table.

238

Dimensional Modeling: In a Business Intelligence Environment

Feature Transaction Periodic type fact Accumulating type fact
type fact table table table
Performance | Performance is Performance for Performance is typically
typically good. Periodic fact table is | good. The select
However, the higher than other statements often require
performance fact table types differences between two
improves if you because data is dates to see the time
chose a grain stored at lesser period in
above the most detailed grain and days/weeks/months
detailed therefore this table between any two or more
because the has fewer rows. activities.
number of rows
decreases.
Insert Yes Yes Yes
Update No No Yes. Only when a
milestone is reached for a
particular activity.
Delete No No No
Fact table Very fast. Slow in comparison | Slow in comparison to the
growth to transaction- transaction and periodic
based fact table. fact table.
Need for High need (This | None or very few Medium need (This is
aggregate is primarily (This is primarily primarily because the data
tables because the because the data is | is stored mostly at the day
data is stored at | already stored at a level. However, the data in
a very detailed highly aggregated accumulating fact tables is
level.) level.) less than the transaction
level.)

6.3 ldentifying the model dimensions

In this section, we discuss issues relating to dimensions. We discussed the
Dimensional Model Design Life Cycle in detail in Chapter 5, “Dimensional Model
Design Life Cycle” on page 103. Here we focus on the Identify dimensions phase
of the DMDL, as shown in Figure 6-24 on page 240.

Chapter 6. Modeling considerations

239

Identify Model Components |

| Requirements Grain Dimensions Facts

Determine All X
Document/Study Identify Fact Table Dimensions | Identify Facts |
Enterprise Business Granularity
Processes

Identify Degenerate and
Conformed Dimensions

Identify Conformed
Facts

Select Business
Process to Model

Identify Multiple
Separate Grains
for a Single
Business Process

1_,
-

Identify Dimensional
Attributes (Granularity) N
and Attribute Hierarchies Identify Fact types

Identify High level

Entities and (Additive, Semi Additive,
Measures for Identify Date and Time Non-Additive, Derived,
Conformance Identify the Fact Granularity Textual, Pseudo, or

Table Types Fact-less Facts) and

Identify Data (Transaction, Identify Slowly Changing Default Aggregate Rules

Sources Periodic, and Dimensions

Accumulating)

Select Requirements Identify Fast Changing | Year-to-date Facts |

Grain Definition Report
¥

Requirement Gathering Repo
¥

Physical Design Considerations
(Indexing, Partitioning and Aggregation)

Verify Design with User Requirements

Gathering Approach Dimensions
(Source Driven X
or » Check Grain for 3 - | Event Fact Tables |
) Atomicity Identify cases for
User Driven) Snowflaking
N — — | Composite Key Design |
ReqUIrementS Identify preliminary Dimensional Challenges
Gathering candidates for (Multi-valued, Garbage,
dimensions and Heterogeneous, Hot Fact Table
Requirements facts from the grain Swappable, Sizing and Growth
Analysis Roleplaying)

ﬂ

L = = L &= Iterate L = = L @=

Metadata Management

Figure 6-24 Dimensional Model Design Life Cycle

6.3.1 Degenerate dimensions

Before we discuss degenerate dimensions in detail, it is important to understand
the following:

A fact table may consist of the following data:
» Foreign keys to dimension tables
» Facts which may be:

— Additive

— Semi-additive

— Non-additive

— Pseudo facts (such as 1 and 0 in case of attendance tracking)
— Textual fact (rarely the case)

— Derived facts

— year-to-date facts

» Degenerate dimensions (one or more)

240 Dimensional Modeling: In a Business Intelligence Environment

What is a degenerate dimension?

A degenerate dimension sounds a bit strange, but it is a dimension without
attributes. It is a transaction-based number which resides in the fact table. There
may be more than one degenerate dimension inside a fact table.

How to identify a degenerate dimension

All OLTP source systems typically consist of transaction numbers, such as bill
numbers, courier tracking numbers, order numbers, invoice numbers, application
received acknowledgements, and ticket numbers. These transaction numbers in
the OLTP system generally define the transaction.

Consider the grocery store example from Chapter 5, “Dimensional Model Design
Life Cycle” on page 103. The dimensional design has a transaction number, such
as the Bill Number# shown in Figure 6-25. This Bill Number# represents several
line items shown on the graphical bill. Now assume that we choose the grain to
be an individual line item on a grocery store bill.

A fact table row is a line item on the bill. And a line item is a fact table row. As
shown in Figure 6-25, we have identified the dimensions that describe each line
item. The dimensions identified are date, time, product, employee, store, and
customer. Other dimensions, such as supplier, are not visible on the graphical bill
but are true to the grain.

Bill Number#
(Degenerate
Dimension)

Bill To;: Carlos

Invoice #PP0403001

Account No.
Date: __08/29/2005
Store=S1394 1600 Hours

Store

Description Quantity UP_DSC Discount

1. Eggs 12 $3
2. Dairy Milk 2 $2
3. Chocolate Powder 1 $9
4. Soda Lime 12
5. Bread 2 8 - Quantity

Grain:
1 Line item
on the Bill

Unit
Price

Product

Employee

ubmitted By: Amit Total Due:______ $75 mmmd Total Amt

Payment must be received by July 23.

Please return a copy of this invoice with your payment.
Thank you.

Figure 6-25 Grocery store bill

Chapter 6. Modeling considerations 241

The next question typically is, “what do we do with the Bill Number#?”’
We certainly cannot discard it, because the grain definition we chose is a single
line item on a bill.

Should we make a separate dimension for the Bill Number#?

To see whether or not we should make a separate dimension, try to analyze the
Bill Number# information for the grocery store example. The Bill Number# is a
transaction number that tells us about our purchase made at the store. If we take
an old Bill Number# 973276 to the store and ask the manager to find out
information relating to Bill Number# 973276, we may get all information relating
to the bill. For example, assume that the manager replies that Bill Number#
973276 was generated on August 11, 2005. The items purchased were apples,
orange, and chocolates. The manager also tells us the quantity, unit price, and
discount for each of the items purchased. He also tells us about the total price. In
short, the Bill Number # tells us about the following information:

Transaction date

Transaction time

Products purchased

Store from which bill was generated

Customer to which the merchandise was sold

Quantity, unit price, and amount for each purchased product

vyVyVYyVvYyYYvYyyYy

The important point to note is that we have already extracted all information
relating to the Bill Number# into other dimensions, such as date, time, store,
customer, and product. Information relating to quantity, unit price, and amount
charged is inside the fact table. It would be correct to say that all information that
the Bill Number# represents is stored in all other dimensions. Therefore, Bill
Number# dimension has no attributes of its own; and therefore it cannot be made
a separate dimension.

Should we place the Bill Number# inside the fact table?

The Bill Number# should be placed inside the fact table right after the
dimensional foreign keys and right before the numeric facts as shown in
Figure 6-26 on page 243.

242 Dimensional Modeling: In a Business Intelligence Environment

SUPPLIER
| SUPPLIERKEY
[Supplier Attributes TED]
PRODUCT ﬁ
@ | Productey
[Product Attributes TED]] [P = Retail_Sales “| EMPLOVEE
___|PRODUCTKEY ? | Employeekey
| |EMPLOYEEKEY [Employee Attributes TBD
[y CUSTOMERKEY
Sgosife'(ey | |suprLIERKEY
DATEID
[Store Attributes TBO] : T
| STOREID é
|| [B1L_numBER(DD)] TIME
T [Fa—oa | [UNIT PRICE FACT] F | Tmeld
% Daterd || [DISCOUNT FACT] [Time Attributes TBO]
UANTITY FACT,
[Date Attributes TBD] — [[Q,, !
|| [REVENUE FACT]
5 Degenerate
CUSTOMER . .
? | CustomerKey DImenSIO“
[Customer Attributes TBD

Figure 6-26 Degenerate dimension

The Bill Number#, in SQL language, serves as a GROUP BY clause for grouping
together all the products purchased in a single transaction or for a single Bill
Number#. Although to some, the Bill Number# looks like a dimension key in the
fact table. But, it is not. This is because all information (such as date of purchase
and products purchased) relating to the Bill Number# has been allocated to
different dimensions.

Note: A degenerate dimension, such as Bill Number#, is there because we
chose the grain to be an individual line item on a grocery store bill. In other
words, the Bill Number# degenerate dimension is there because the grain we
chose represents a single transaction or transaction line item.

How to identify that a degenerate dimension is missing

The best way to identify a missing or a badly designed degenerate dimension is
to review your dimensional design and look for any dimension table that has
equal or nearly the same number of rows as the fact table. In other words, if, for
every row that you insert in the fact table you also have to pre-insert another row
in any other dimension table, then you have missed a degenerate dimension.

Let us review the dimensional model shown in Figure 6-27 on page 244. The
grain for this dimensional model has been chosen to be an individual line item on
a grocery store bill.

Chapter 6. Modeling considerations 243

PRODUCT

7 [PRODUCTKEY ~
E' PRODUCTID_NATURA
PRODUCTNAME - EMPLOYEE
7 |EMPLOYEEKEY Py
a :‘ EMPLOYEEID _Natural
oo %~ REPORTS T TN
Retail_Sales
PRODCUCTKEY o c
" |EmpLOYEEKEY SUPPLIER
BILL * " |cusToMERKEY 7 | suPPLIERKEY ~
7 [BILL_kEY " |sUPPLIERKEY SUPPLIERID_Matural
BILL_NUMBER:= " |oaTED oo—— [COMPANY NAME] [+
BILL_DATE | e
__|STORED p— |
f E——oo| |BILLKEY
Bill_Number# has been ! [Facte T80]

separate dimension.

removed to create a ﬁ'_ c“%‘_‘:l Date |
5

STORE
7 |StoreKey I CUSTOMER
[Store Name] w T | CUSTOMERKEY

FLIETARER TR RIATLIR

IF, Number of Rows in a Dimension table = Number of Rows in Fact Table
Then Degenerate Dimension is missing

Figure 6-27 Missing degenerate dimension (Bad Design)

Note: Dimension tables are static when compared to fact tables, which grow
constantly in size as sales are made on a daily basis and the activity is
recorded inside the fact table. In a dimensional design, if the size of a
dimension table remains equal or nearly equal to that of a fact table, then a
degenerate dimension has been missed. In other words, if for every fact table
row to be inserted, correspondingly, an equal or near equal number of rows
have to be inserted into a dimension table, then there is a design flaw because
a degenerate dimension has been wrongly represented into a new dimension

of its own.

In Figure 6-27, we observe that for every purchase a customer makes, an equal
number of rows are inserted into the dimension and fact tables. This is because
the Bill dimension table has the Bill_Number which is different for each bill. The
Bill dimension is not a static dimension like other dimensions.

When will the Bill_Number# no longer be a degenerate dimension?

» When certain data columns belong to the Bill_Number# itself and do not fall
into any other dimensions (such as Date, Time, Product, Customer, Supplier,
and Employee), then Bill_Number# would no longer be a degenerate
dimension. An example of this is explained in a case study in “ldentify
degenerate dimensions” on page 384. We see that Invoice Number (type of

244 Dimensional Modeling: In a Business Intelligence Environment

transaction number) is handled as a separate dimension and not as a
degenerate dimension inside the fact table.

This decision however needs to carefully be made by studying the Bill_Number#.
If you decide to create a new separate dimension for the Bill_Number#, then you
must make sure that it will not contain equal or near equal rows with the fact
table. If it does, then there has probably been a mistake.

Note: OLTP transaction numbers, such as bill numbers, courier tracking #,
order number, invoice number, application received acknowledgement, and
ticket number, usually produce dimensions without any attributes and are
represented as degenerate dimensions in the fact table.

6.3.2 Handling time as a dimension or a fact

A date dimension typically represents day, week, month, quarter, or year, where
a time dimension represents hours, minutes, and seconds within a day. These
are two physically separate dimension structures within the data warehouse,
each with their own surrogate keys used to join the fact tables. Because of the
unique characteristics of these two dimensions, special considerations can be
made when building them. It is not advised to merge the date and time dimension
into one table because a simple date dimension table which has 365 rows (for 1
year) would explode into 365 (Days) x 24 (Hours) x 60 (Minutes) x 60 (Seconds)
=31 536 000 rows if we tried storing hours, minutes, and seconds. This is for just
1 year. If we had 10 years of data in our date table, we would have 10 x 365 =

3 650 rows (assuming no leap year). If we now tried to store data at the second,
minute, and hour level, we would expand the simple date table from 3 650 rows
(for 10 years) to about 3 650 x 24 x 60 x 60 = 315 360 000 rows.

Having now made a point to handle the date and time dimensions separately, we
can discuss how to implement the time dimension.

Time in dimensional modeling

Unlike the date dimension, the time-of-day (hour, minute, and second) may be
well expressed as a simple numerical fact rather than as a separate time
dimension, unless there are textual descriptions of certain periods within the day
that are meaningful, such as early morning, late morning, noon, lunch hour,
afternoon, evening, night, and late night shift.

» Time of day as a dimension:

Time is expressed as a dimension when the business needs to understand
the sales of its product over a time period which has meani